{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"-733:input_data","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-1003:input_data","from_node_id":"-238:data"},{"to_node_id":"-987:input_ds","from_node_id":"-733:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-987:sorted_data"},{"to_node_id":"-1009:input_ds","from_node_id":"-1003:data"},{"to_node_id":"-86:input_data","from_node_id":"-1009:sorted_data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-06-30","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -100) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n#return_5\n#pe_ttm_0\n\n#high_0/adjust_factor_0\n#low_0/adjust_factor_0\n\n#timeperiod移动平均线\n#zhouma34=ta_ma(close_0, timeperiod=166)/adjust_factor_0\nzhouma34=ta_ma(close_0, timeperiod=166)\n#timeperiod移动平均线\nzhouma55=ta_ma(close_0, timeperiod=258)\nisup=zhouma34/zhouma55\nsy=shift(close_0, -100)/shift(open_0, -1)\n\n#ts_max(high_0,10)/adjust_factor_0\n#ts_min(low_0,10)/adjust_factor_0\n\nts_argmax(high_0, 258*5)\n#4年高点,1年按258个交易日算\nisgaodian=where(ts_argmax(high_0, 258*5)<500.0,1,0)\n\n#1年低点,1年按258个交易日算\nts_argmin(low_0, 258*1)\nisdidian=where(ts_argmin(low_0, 258*1)<100.0,1,0)\n\n#半年高点,1年按258个交易日算\nisbanniangaodian=where(ts_argmax(high_0, 128)<80.0,1,0)\n#在周34-55均线区间,日166-258\niszaiquejian=where((close_0<zhouma34) & (close_0>zhouma55),1,0)\n#曾经前几天下过55线,触碰过日258线\nisdiyu258=where(ts_min(low_0, 3)<zhouma55,1,0)\n\n#tmax=ts_argmax(high_0, 258*5)\n\n#反弹比例,选比例最高的10-20只交易,后面调试\nyiniandidian=ts_min(low_0, 258*1)\nbanniangaodian=ts_max(high_0, 128*1)\nfantanbili=banniangaodian/yiniandidian\n\n#排除ST\nst_status_0\n#时间序列函数, d 天内的最大值\n#ts_max(high_0, 258*4)\n#时间序列函数, d 天内的最小值\n#ts_min(low_0, 258*1)\n\n\n\n#isxiadie=where(ts_max(high_0, 258*4)>ts_min(low_0, 258*1),1,0)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-07-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2019-12-30","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"2500","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"2500","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n print('初始化函数,只执行一次')\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 10\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.3\n context.options['hold_days'] = 10\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n \n today = data.current_dt.strftime('%Y-%m-%d')\n #print('日期:',today)\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n #print('context.portfolio.portfolio_value:',context.portfolio.portfolio_value)\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n #print('cash_for_buy:',cash_for_buy,' context.portfolio.cash:',context.portfolio.cash)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n #print('context.portfolio.portfolio_value:',context.portfolio.portfolio_value)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n #print('is_staging:',is_staging,' cash_for_sell:',cash_for_sell)\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n \n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n print(today,' 选股: ',ranker_prediction[:10])\n print('sell instruments:',instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n \n stock_market_today_high = data.current(context.symbol(instrument), 'high') #今日最高价 \n stock_market_today_close = data.current(context.symbol(instrument), 'close') #今日收盘价\n last_cost_price = equities[instrument].cost_basis # 上次交易金额 \n target_return = stock_market_today_close/last_cost_price\n\n \n print(today,' instrument 滚动卖出 :','收益: ',target_return, instrument,'context.symbol(instrument):',context.symbol(instrument))\n if cash_for_sell <= 0:\n break\n \n #加上持仓超过50天或者收益大于20%卖出\n if len(equities) > 0:\n for i in equities.keys():\n #print(today,' equities:',equities)\n #p = context.portfolio.positions.items(i)\n #cash_for_sell -= p.amount * p.last_sale_price\n \n stock_market_price = data.current(context.symbol(i), 'price') # 最新市场价格\n stock_market_today_high = data.current(context.symbol(i), 'high') #今日最高价 \n stock_market_today_close = data.current(context.symbol(i), 'close') #今日收盘价\n last_sale_date = equities[i].last_sale_date # 上次交易日期\n last_cost_price = equities[i].cost_basis # 上次交易金额\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n # 最高收益\n #high_return = (highclose_price_since_buy-last_cost_price)/last_cost_price\n \n target_return = stock_market_today_close/last_cost_price\n \n if hold_days>=100 :\n context.order_target(context.symbol(i), 0)\n print(today,'超期卖出 :','收益: ',target_return,equities[i], ' context.symbol(i):',context.symbol(i))\n context.order_target(context.symbol(i), 0)\n #if target_return>=1.2 :\n # context.order_target(context.symbol(i), 0)\n # print(today,' 盈利卖出 :','收益: ',target_return,equities[i],' context.symbol(i):',context.symbol(i))\n # elif target_return<=0.9 :\n # context.order_target(context.symbol(i), 0)\n # print(today,' 止损卖出 :','收益: ',target_return,equities[i],' context.symbol(i):',context.symbol(i))\n \n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n print(today,' buy_instruments:',buy_instruments,' 权重: ',buy_cash_weights)\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n print(today,' 买入 ',instrument)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n print('准备数据,只执行一次')\n df = context.options['data'].read_df()\n # 函数:求满足开仓条件的股票列表\n def open_pos_con(df):\n return list(df[df['fantanbili']>0].instrument)\n # 函数:求满足平仓条件的股票列表\n def close_pos_con(df):\n return list(df[df['fantanbili']>0].instrument)\n \n # 每日卖出股票的数据框\n context.daily_sell_stock= df.groupby('date').apply(close_pos_con) \n # 每日买入股票的数据框\n context.daily_buy_stock= df.groupby('date').apply(open_pos_con) \n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-733","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"isgaodian==1&isdidian==1&isbanniangaodian==1&st_status_0==0&date>'2019-01-01'","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-733"}],"output_ports":[{"name":"data","node_id":"-733"},{"name":"left_data","node_id":"-733"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-987","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"isup","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-987"},{"name":"sort_by_ds","node_id":"-987"}],"output_ports":[{"name":"sorted_data","node_id":"-987"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-1003","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"isgaodian==1&isdidian==1&isbanniangaodian==1&st_status_0==0&date>'2019-01-01'","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1003"}],"output_ports":[{"name":"data","node_id":"-1003"},{"name":"left_data","node_id":"-1003"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-1009","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"isup","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-1009"},{"name":"sort_by_ds","node_id":"-1009"}],"output_ports":[{"name":"sorted_data","node_id":"-1009"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='212,60,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='583,52,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='528,706,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='329,507,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='691,823,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='936,-26,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,600,200,200'/><node_position Node='-86' Position='1038,568,200,200'/><node_position Node='-215' Position='381,181,200,200'/><node_position Node='-222' Position='356,263,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='949,1001,200,200'/><node_position Node='-733' Position='459,365,200,200'/><node_position Node='-987' Position='547,441,200,200'/><node_position Node='-1003' Position='1188,410,200,200'/><node_position Node='-1009' Position='1196,484,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-03-26 01:16:24.287076] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-03-26 01:16:24.295721] INFO: moduleinvoker: 命中缓存
[2022-03-26 01:16:24.297321] INFO: moduleinvoker: instruments.v2 运行完成[0.010229s].
[2022-03-26 01:16:24.310654] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-03-26 01:16:24.318261] INFO: moduleinvoker: 命中缓存
[2022-03-26 01:16:24.319922] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.009268s].
[2022-03-26 01:16:24.325837] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-03-26 01:16:24.333887] INFO: moduleinvoker: 命中缓存
[2022-03-26 01:16:24.335287] INFO: moduleinvoker: input_features.v1 运行完成[0.009446s].
[2022-03-26 01:16:24.348790] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-03-26 01:16:24.355214] INFO: moduleinvoker: 命中缓存
[2022-03-26 01:16:24.356573] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007785s].
[2022-03-26 01:16:24.363085] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-03-26 01:16:24.369257] INFO: moduleinvoker: 命中缓存
[2022-03-26 01:16:24.370645] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007557s].
[2022-03-26 01:16:24.378253] INFO: moduleinvoker: filter.v3 开始运行..
[2022-03-26 01:16:24.386591] INFO: moduleinvoker: 命中缓存
[2022-03-26 01:16:24.388030] INFO: moduleinvoker: filter.v3 运行完成[0.009777s].
[2022-03-26 01:16:24.393389] INFO: moduleinvoker: sort.v5 开始运行..
[2022-03-26 01:16:24.401011] INFO: moduleinvoker: 命中缓存
[2022-03-26 01:16:24.402293] INFO: moduleinvoker: sort.v5 运行完成[0.008901s].
[2022-03-26 01:16:24.409382] INFO: moduleinvoker: join.v3 开始运行..
[2022-03-26 01:16:24.416086] INFO: moduleinvoker: 命中缓存
[2022-03-26 01:16:24.417259] INFO: moduleinvoker: join.v3 运行完成[0.007875s].
[2022-03-26 01:16:24.424938] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-03-26 01:16:24.431578] INFO: moduleinvoker: 命中缓存
[2022-03-26 01:16:24.432798] INFO: moduleinvoker: dropnan.v1 运行完成[0.007857s].
[2022-03-26 01:16:24.445518] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2022-03-26 01:16:24.532492] INFO: StockRanker: 特征预处理 ..
[2022-03-26 01:16:24.559297] INFO: StockRanker: prepare data: training ..
[2022-03-26 01:16:24.621523] INFO: StockRanker训练: 4c5b351a 准备训练: 930 行数
[2022-03-26 01:16:24.842735] INFO: StockRanker训练: 正在训练 ..