复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-4862:instruments","from_node_id":"-4849:data"},{"to_node_id":"-1557:instruments","from_node_id":"-4849:data"},{"to_node_id":"-1564:instruments","from_node_id":"-4849:data"},{"to_node_id":"-6998:input_data","from_node_id":"-4862:data"},{"to_node_id":"-1590:data1","from_node_id":"-2687:left_data"},{"to_node_id":"-2687:input_data","from_node_id":"-6998:data"},{"to_node_id":"-1564:features","from_node_id":"-1552:data"},{"to_node_id":"-1583:data2","from_node_id":"-1557:data"},{"to_node_id":"-1574:input_1","from_node_id":"-1564:data"},{"to_node_id":"-1583:data1","from_node_id":"-1574:data_1"},{"to_node_id":"-1590:data2","from_node_id":"-1583:data"},{"to_node_id":"-125:input_data","from_node_id":"-1590:data"},{"to_node_id":"-4862:features","from_node_id":"-2125:data"},{"to_node_id":"-6998:features","from_node_id":"-2125:data"}],"nodes":[{"node_id":"-4849","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-04-15","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-09-15","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-4849"}],"output_ports":[{"name":"data","node_id":"-4849"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-4862","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"90","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-4862"},{"name":"features","node_id":"-4862"}],"output_ports":[{"name":"data","node_id":"-4862"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-2687","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-2687"}],"output_ports":[{"name":"data","node_id":"-2687"},{"name":"left_data","node_id":"-2687"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-6998","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6998"},{"name":"features","node_id":"-6998"}],"output_ports":[{"name":"data","node_id":"-6998"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-125","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"total>0 & rank(板块流通收益率)>0.95","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-125"}],"output_ports":[{"name":"data","node_id":"-125"},{"name":"left_data","node_id":"-125"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-1552","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"industry_sw_level2_0\nmarket_cap_float_0\ndaily_return_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-1552"}],"output_ports":[{"name":"data","node_id":"-1552"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-1557","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"bar1d_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1557"},{"name":"features","node_id":"-1557"}],"output_ports":[{"name":"data","node_id":"-1557"}],"cacheable":true,"seq_num":11,"comment":"日线数据-标注","comment_collapsed":true},{"node_id":"-1564","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"90","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1564"},{"name":"features","node_id":"-1564"}],"output_ports":[{"name":"data","node_id":"-1564"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-1574","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3, SW_type):\n basic_data = input_1.read()\n start_date = str(basic_data.date.min())\n end_date = str(basic_data.date.max())\n SW_data = DataSource('basic_info_IndustrySw').read()\n SW_data['code'] = SW_data.code.astype('int')\n\n SW_data_2014_2 = SW_data[(SW_data.version==2014)&(SW_data.industry_sw_level==2)][['code','name']].rename(columns={'code':'industry_sw_level2_0','name':'name_SW2'})\n\n SW_data_2021_2 = SW_data[(SW_data.version==2021)&(SW_data.industry_sw_level==2)][['code','name']].rename(columns={'code':'industry_sw_level2_0','name':'name_SW2'})\n\n basic_data['daily_return_0'] = basic_data['daily_return_0']-1\n\n if end_date < '2021-12-13':\n\n basic_data = basic_data.merge(SW_data_2014_2,how='left',on='industry_sw_level2_0')\n\n else:\n basic_data_2014 = basic_data[basic_data.date < '2021-12-13']\n\n basic_data_2014 = basic_data_2014.merge(SW_data_2014_2,how='left',on='industry_sw_level2_0')\n\n basic_data_2021 = basic_data[basic_data.date >= '2021-12-13']\n\n basic_data_2021 = basic_data_2021.merge(SW_data_2021_2,how='left',on='industry_sw_level2_0')\n\n basic_data = pd.concat([basic_data_2014,basic_data_2021])\n \n block_data = basic_data.groupby(['name_SW2','date']).agg({'daily_return_0':'sum','market_cap_float_0':'sum'}).reset_index()\n block_data.columns = ['name_SW2','date','daily_return_0_block_sum','market_cap_float_0_block_sum']\n rst = pd.merge(basic_data[['date','name_SW2','instrument','daily_return_0','market_cap_float_0']],block_data,on=['date','name_SW2'],how='left').dropna()\n \n rst['板块流通收益率'] = rst['daily_return_0']*rst['market_cap_float_0']/rst['market_cap_float_0_block_sum']\n data_1 = DataSource.write_df(rst)\n return Outputs(data_1=data_1)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n 'SW_type':'name_SW2'\n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"data_1,data_2","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-1574"},{"name":"input_2","node_id":"-1574"},{"name":"input_3","node_id":"-1574"}],"output_ports":[{"name":"data_1","node_id":"-1574"},{"name":"data_2","node_id":"-1574"},{"name":"data_3","node_id":"-1574"}],"cacheable":true,"seq_num":16,"comment":"申万二级收益","comment_collapsed":true},{"node_id":"-1583","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-1583"},{"name":"data2","node_id":"-1583"}],"output_ports":[{"name":"data","node_id":"-1583"}],"cacheable":true,"seq_num":17,"comment":"连接板块数据","comment_collapsed":true},{"node_id":"-1590","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-1590"},{"name":"data2","node_id":"-1590"}],"output_ports":[{"name":"data","node_id":"-1590"}],"cacheable":false,"seq_num":18,"comment":"连接因子数据和板块数据","comment_collapsed":true},{"node_id":"-2125","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n\ncorrelation(log(volume_0),return_0,10)\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-2125"}],"output_ports":[{"name":"data","node_id":"-2125"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-4849' Position='1034.266845703125,-245,200,200'/><node_position Node='-4862' Position='435.39959716796875,179.13336181640625,200,200'/><node_position Node='-2687' Position='499.532470703125,565.3995971679688,200,200'/><node_position Node='-6998' Position='454,383.8001708984375,200,200'/><node_position Node='-125' Position='1122,1017,200,200'/><node_position Node='-1552' Position='1815.52978515625,87.13337707519531,200,200'/><node_position Node='-1557' Position='1481,-26,200,200'/><node_position Node='-1564' Position='1443.8682861328125,243.06642150878906,200,200'/><node_position Node='-1574' Position='1498.9345703125,393.1997985839844,200,200'/><node_position Node='-1583' Position='1592,595.8666381835938,200,200'/><node_position Node='-1590' Position='1506,781,200,200'/><node_position Node='-2125' Position='468.73583984375,-58.64406871795654,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [29]:
    # 本代码由可视化策略环境自动生成 2022年9月26日 10:32
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m16_run_bigquant_run(input_1, input_2, input_3, SW_type):
        basic_data = input_1.read()
        start_date = str(basic_data.date.min())
        end_date = str(basic_data.date.max())
        SW_data = DataSource('basic_info_IndustrySw').read()
        SW_data['code'] = SW_data.code.astype('int')
    
        SW_data_2014_2 = SW_data[(SW_data.version==2014)&(SW_data.industry_sw_level==2)][['code','name']].rename(columns={'code':'industry_sw_level2_0','name':'name_SW2'})
    
        SW_data_2021_2 = SW_data[(SW_data.version==2021)&(SW_data.industry_sw_level==2)][['code','name']].rename(columns={'code':'industry_sw_level2_0','name':'name_SW2'})
    
        basic_data['daily_return_0'] = basic_data['daily_return_0']-1
    
        if end_date < '2021-12-13':
    
            basic_data = basic_data.merge(SW_data_2014_2,how='left',on='industry_sw_level2_0')
    
        else:
            basic_data_2014 = basic_data[basic_data.date < '2021-12-13']
    
            basic_data_2014 = basic_data_2014.merge(SW_data_2014_2,how='left',on='industry_sw_level2_0')
    
            basic_data_2021 = basic_data[basic_data.date >= '2021-12-13']
    
            basic_data_2021 = basic_data_2021.merge(SW_data_2021_2,how='left',on='industry_sw_level2_0')
    
            basic_data = pd.concat([basic_data_2014,basic_data_2021])
            
        block_data = basic_data.groupby(['name_SW2','date']).agg({'daily_return_0':'sum','market_cap_float_0':'sum'}).reset_index()
        block_data.columns = ['name_SW2','date','daily_return_0_block_sum','market_cap_float_0_block_sum']
        rst = pd.merge(basic_data[['date','name_SW2','instrument','daily_return_0','market_cap_float_0']],block_data,on=['date','name_SW2'],how='left').dropna()
        
        rst['板块流通收益率'] = rst['daily_return_0']*rst['market_cap_float_0']/rst['market_cap_float_0_block_sum']
        data_1 = DataSource.write_df(rst)
        return Outputs(data_1=data_1)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m16_post_run_bigquant_run(outputs):
        return outputs
    
    
    m2 = M.instruments.v2(
        start_date='2022-04-15',
        end_date='2022-09-15',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m11 = M.use_datasource.v1(
        instruments=m2.data,
        datasource_id='bar1d_CN_STOCK_A',
        start_date='',
        end_date=''
    )
    
    m6 = M.input_features.v1(
        features="""industry_sw_level2_0
    market_cap_float_0
    daily_return_0
    """
    )
    
    m13 = M.general_feature_extractor.v7(
        instruments=m2.data,
        features=m6.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m16 = M.cached.v3(
        input_1=m13.data,
        run=m16_run_bigquant_run,
        post_run=m16_post_run_bigquant_run,
        input_ports='',
        params="""{
        'SW_type':'name_SW2'
    }""",
        output_ports='data_1,data_2'
    )
    
    m17 = M.join.v3(
        data1=m16.data_1,
        data2=m11.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m12 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    
    correlation(log(volume_0),return_0,10)
    
    """
    )
    
    m3 = M.general_feature_extractor.v7(
        instruments=m2.data,
        features=m12.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m5 = M.derived_feature_extractor.v3(
        input_data=m3.data,
        features=m12.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m4 = M.chinaa_stock_filter.v1(
        input_data=m5.data,
        index_constituent_cond=['全部'],
        board_cond=['上证主板', '深证主板', '创业板'],
        industry_cond=['全部'],
        st_cond=['正常'],
        delist_cond=['非退市'],
        output_left_data=False
    )
    
    m18 = M.join.v3(
        data1=m4.left_data,
        data2=m17.data,
        on='date,instrument',
        how='inner',
        sort=False,
        m_cached=False
    )
    
    m7 = M.filter.v3(
        input_data=m18.data,
        expr='total>0 & rank(板块流通收益率)>0.95',
        output_left_data=False
    )
    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-29-bfb022869f35> in <module>
        131 )
        132 
    --> 133 m18 = M.join.v3(
        134     data1=m4.left_data,
        135     data2=m17.data,
    
    AttributeError: 'NoneType' object has no attribute 'open_df_store'