{"description":"实验创建于2022/6/26","graph":{"edges":[{"to_node_id":"-122:features","from_node_id":"-117:data"},{"to_node_id":"-137:features","from_node_id":"-117:data"},{"to_node_id":"-113:features","from_node_id":"-117:data"},{"to_node_id":"-54:features","from_node_id":"-117:data"},{"to_node_id":"-61:features","from_node_id":"-117:data"},{"to_node_id":"-137:input_data","from_node_id":"-122:data"},{"to_node_id":"-122:instruments","from_node_id":"-128:data"},{"to_node_id":"-155:instruments","from_node_id":"-128:data"},{"to_node_id":"-166:data2","from_node_id":"-137:data"},{"to_node_id":"-166:data1","from_node_id":"-155:data"},{"to_node_id":"-113:training_ds","from_node_id":"-166:data"},{"to_node_id":"-54:instruments","from_node_id":"-45:data"},{"to_node_id":"-112:instruments","from_node_id":"-45:data"},{"to_node_id":"-61:input_data","from_node_id":"-54:data"},{"to_node_id":"-113:predict_ds","from_node_id":"-61:data"},{"to_node_id":"-112:options_data","from_node_id":"-113:predictions"}],"nodes":[{"node_id":"-117","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\nclose_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,3)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-117"}],"output_ports":[{"name":"data","node_id":"-117"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-128","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"20180101","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"20201231","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-128"}],"output_ports":[{"name":"data","node_id":"-128"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-137","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-137"},{"name":"features","node_id":"-137"}],"output_ports":[{"name":"data","node_id":"-137"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-155","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数 据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-155"}],"output_ports":[{"name":"data","node_id":"-155"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-166","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-166"},{"name":"data2","node_id":"-166"}],"output_ports":[{"name":"data","node_id":"-166"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-45","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"20210101","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"20211231","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-45"}],"output_ports":[{"name":"data","node_id":"-45"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-54","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-54"},{"name":"features","node_id":"-54"}],"output_ports":[{"name":"data","node_id":"-54"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-61","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-61"},{"name":"features","node_id":"-61"}],"output_ports":[{"name":"data","node_id":"-61"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.stock_ranker.stock_ranker-v2","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"slim_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-113"},{"name":"features","node_id":"-113"},{"name":"base_model","node_id":"-113"},{"name":"test_ds","node_id":"-113"},{"name":"input_model","node_id":"-113"},{"name":"predict_ds","node_id":"-113"}],"output_ports":[{"name":"model","node_id":"-113"},{"name":"predictions","node_id":"-113"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-112","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"1000000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-112"},{"name":"options_data","node_id":"-112"},{"name":"history_ds","node_id":"-112"},{"name":"benchmark_ds","node_id":"-112"},{"name":"trading_calendar","node_id":"-112"}],"output_ports":[{"name":"raw_perf","node_id":"-112"}],"cacheable":false,"seq_num":11,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-117' Position='209.12203979492188,-338.03826904296875,200,200'/><node_position Node='-122' Position='-21,55,200,200'/><node_position Node='-128' Position='-268,-143,200,200'/><node_position Node='-137' Position='-13,254,200,200'/><node_position Node='-155' Position='-375,82,200,200'/><node_position Node='-166' Position='-64,411,200,200'/><node_position Node='-45' Position='601,-87,200,200'/><node_position Node='-54' Position='571,120,200,200'/><node_position Node='-61' Position='484,270,200,200'/><node_position Node='-113' Position='65,595,200,200'/><node_position Node='-112' Position='359.71221923828125,776.8779296875,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-06-28 17:10:34.451989] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-06-28 17:10:34.461578] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:34.466839] INFO: moduleinvoker: input_features.v1 运行完成[0.014853s].
[2022-06-28 17:10:34.477751] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-06-28 17:10:34.492951] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:34.496545] INFO: moduleinvoker: instruments.v2 运行完成[0.018814s].
[2022-06-28 17:10:34.546486] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-06-28 17:10:34.555147] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:34.558843] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012364s].
[2022-06-28 17:10:34.573769] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-06-28 17:10:34.581542] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:34.584655] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010888s].
[2022-06-28 17:10:34.604363] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-06-28 17:10:34.622510] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:34.625111] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.020766s].
[2022-06-28 17:10:34.637253] INFO: moduleinvoker: join.v3 开始运行..
[2022-06-28 17:10:34.645989] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:34.648357] INFO: moduleinvoker: join.v3 运行完成[0.01109s].
[2022-06-28 17:10:34.656041] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-06-28 17:10:34.665719] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:34.668057] INFO: moduleinvoker: instruments.v2 运行完成[0.012034s].
[2022-06-28 17:10:34.687673] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-06-28 17:10:34.698720] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:34.701401] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.013781s].
[2022-06-28 17:10:34.711800] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-06-28 17:10:34.719429] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:34.722246] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010442s].
[2022-06-28 17:10:34.779016] INFO: moduleinvoker: stock_ranker.v2 开始运行..
[2022-06-28 17:10:34.801645] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:34.996346] INFO: moduleinvoker: stock_ranker.v2 运行完成[0.217335s].
[2022-06-28 17:10:35.071457] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-06-28 17:10:35.089078] INFO: backtest: biglearning backtest:V8.6.2
[2022-06-28 17:10:35.092325] INFO: backtest: product_type:stock by specified
[2022-06-28 17:10:35.337095] INFO: moduleinvoker: cached.v2 开始运行..
[2022-06-28 17:10:35.348491] INFO: moduleinvoker: 命中缓存
[2022-06-28 17:10:35.357542] INFO: moduleinvoker: cached.v2 运行完成[0.02044s].
[2022-06-28 17:10:38.582035] INFO: algo: TradingAlgorithm V1.8.8
[2022-06-28 17:10:39.318497] INFO: algo: trading transform...
[2022-06-28 17:10:39.972736] ERROR: moduleinvoker: module name: backtest, module version: v8, trackeback: AttributeError: 'TradingAlgorithm' object has no attribute 'ranker_prediction'
[2022-06-28 17:10:39.980771] ERROR: moduleinvoker: module name: trade, module version: v4, trackeback: AttributeError: 'TradingAlgorithm' object has no attribute 'ranker_prediction'
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-7f9505a9814f4bd0b7bf72a7184ed05c"}/bigcharts-data-end
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-9-933a3a65f720> in <module>
193 )
194
--> 195 m11 = M.trade.v4(
196 instruments=m5.data,
197 options_data=m10.predictions,
<ipython-input-9-933a3a65f720> in m11_handle_data_bigquant_run(context, data)
21 def m11_handle_data_bigquant_run(context, data):
22 # 按日期过滤得到今日的预测数据
---> 23 ranker_prediction = context.ranker_prediction[
24 context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
25
AttributeError: 'TradingAlgorithm' object has no attribute 'ranker_prediction'