{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-1581:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-1602:features_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-1595:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-225:options_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-225:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-1599:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"-185:features","SourceOutputPortId":"-250:data"},{"DestinationInputPortId":"-192:features","SourceOutputPortId":"-250:data"},{"DestinationInputPortId":"-169:features","SourceOutputPortId":"-250:data"},{"DestinationInputPortId":"-176:features","SourceOutputPortId":"-250:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"-1581:model"},{"DestinationInputPortId":"-1581:training_ds","SourceOutputPortId":"-1595:data"},{"DestinationInputPortId":"-1607:input_data","SourceOutputPortId":"-1599:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"-1602:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"-1602:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-1607:data"},{"DestinationInputPortId":"-133:instruments","SourceOutputPortId":"-125:data"},{"DestinationInputPortId":"-169:instruments","SourceOutputPortId":"-125:data"},{"DestinationInputPortId":"-148:data1","SourceOutputPortId":"-133:data"},{"DestinationInputPortId":"-229:features","SourceOutputPortId":"-143:data"},{"DestinationInputPortId":"-250:features_ds","SourceOutputPortId":"-143:data"},{"DestinationInputPortId":"-243:input_data","SourceOutputPortId":"-148:data"},{"DestinationInputPortId":"-204:options_data","SourceOutputPortId":"-156:predictions"},{"DestinationInputPortId":"-185:instruments","SourceOutputPortId":"-160:data"},{"DestinationInputPortId":"-204:instruments","SourceOutputPortId":"-160:data"},{"DestinationInputPortId":"-176:input_data","SourceOutputPortId":"-169:data"},{"DestinationInputPortId":"-148:data2","SourceOutputPortId":"-176:data"},{"DestinationInputPortId":"-192:input_data","SourceOutputPortId":"-185:data"},{"DestinationInputPortId":"-247:input_data","SourceOutputPortId":"-192:data"},{"DestinationInputPortId":"-156:model","SourceOutputPortId":"-229:model"},{"DestinationInputPortId":"-229:training_ds","SourceOutputPortId":"-243:data"},{"DestinationInputPortId":"-255:input_data","SourceOutputPortId":"-247:data"},{"DestinationInputPortId":"-156:data","SourceOutputPortId":"-255:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"close_1\nopen_1\nhigh_1\nlow_1","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2020-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"Comment":"","CommentCollapsed":true},{"Id":"-250","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"jin4=close_0 - open_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-250"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-250","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":31,"Comment":"","CommentCollapsed":true},{"Id":"-1581","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-1581"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1581"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-1581"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-1581"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-1581","OutputType":null},{"Name":"feature_gains","NodeId":"-1581","OutputType":null},{"Name":"m_lazy_run","NodeId":"-1581","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-1595","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1595"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1595"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1595","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"Comment":"","CommentCollapsed":true},{"Id":"-1599","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1599"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1599"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1599","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"Comment":"","CommentCollapsed":true},{"Id":"-1602","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"jin4=close_0 - open_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-1602"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1602","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"Comment":"","CommentCollapsed":true},{"Id":"-1607","ModuleId":"BigQuantSpace.filter.filter-v3","ModuleParameters":[{"Name":"expr","Value":"jin4>0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1607"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1607","OutputType":null},{"Name":"left_data","NodeId":"-1607","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"Comment":"","CommentCollapsed":true},{"Id":"-125","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-125"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-125","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"Comment":"","CommentCollapsed":true},{"Id":"-133","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-133"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-133","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"Comment":"","CommentCollapsed":true},{"Id":"-143","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"close_1\nopen_1\nhigh_1\nlow_1","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-143"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-143","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"Comment":"","CommentCollapsed":true},{"Id":"-148","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-148"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-148"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-148","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"Comment":"","CommentCollapsed":true},{"Id":"-156","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"-156"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"-156"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"-156","OutputType":null},{"Name":"m_lazy_run","NodeId":"-156","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"Comment":"","CommentCollapsed":true},{"Id":"-160","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2020-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-160"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-160","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":true},{"Id":"-169","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-169"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-169"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-169","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":23,"Comment":"","CommentCollapsed":true},{"Id":"-176","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-176"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-176"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-176","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":24,"Comment":"","CommentCollapsed":true},{"Id":"-185","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-185"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-185"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-185","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":25,"Comment":"","CommentCollapsed":true},{"Id":"-192","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-192"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-192"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-192","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":26,"Comment":"","CommentCollapsed":true},{"Id":"-204","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.5\n context.options['hold_days'] = 1\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-204"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-204"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-204"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-204"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-204"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-204","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":27,"Comment":"","CommentCollapsed":true},{"Id":"-229","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-229"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-229"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-229"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-229"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-229","OutputType":null},{"Name":"feature_gains","NodeId":"-229","OutputType":null},{"Name":"m_lazy_run","NodeId":"-229","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":28,"Comment":"","CommentCollapsed":true},{"Id":"-243","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-243"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-243"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-243","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":29,"Comment":"","CommentCollapsed":true},{"Id":"-247","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-247"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-247"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-247","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":30,"Comment":"","CommentCollapsed":true},{"Id":"-255","ModuleId":"BigQuantSpace.filter.filter-v3","ModuleParameters":[{"Name":"expr","Value":"jin4>0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-255"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-255","OutputType":null},{"Name":"left_data","NodeId":"-255","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":32,"Comment":"","CommentCollapsed":true},{"Id":"-225","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.5\n context.options['hold_days'] = 1\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-225"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-225"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-225"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-225"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-225"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-225","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='636,34,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='375,193,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='1151.9993896484375,-12.677469253540039,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='674,345,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='1111,630,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1483.064208984375,137.45217895507812,200,200'/><NodePosition Node='-215' Position='806,158,200,200'/><NodePosition Node='-222' Position='810,250,200,200'/><NodePosition Node='-231' Position='1479.38623046875,243.00054931640625,200,200'/><NodePosition Node='-238' Position='1481.4835205078125,308.03240966796875,200,200'/><NodePosition Node='-250' Position='-617.3236083984375,8.096708297729492,200,200'/><NodePosition Node='-1581' Position='1033,529,200,200'/><NodePosition Node='-1595' Position='801,437,200,200'/><NodePosition Node='-1599' Position='1482.54833984375,379.12860107421875,200,200'/><NodePosition Node='-1602' Position='1153.4835205078125,162.09722900390625,200,200'/><NodePosition Node='-1607' Position='1483.7747802734375,449.3544006347656,200,200'/><NodePosition Node='-125' Position='-1111,-58,200,200'/><NodePosition Node='-133' Position='-1252,60,200,200'/><NodePosition Node='-143' Position='-617.0653381347656,-82.61265182495117,200,200'/><NodePosition Node='-148' Position='-1073,252,200,200'/><NodePosition Node='-156' Position='-341,526,200,200'/><NodePosition Node='-160' Position='-248,4,200,200'/><NodePosition Node='-169' Position='-941,65,200,200'/><NodePosition Node='-176' Position='-937,157,200,200'/><NodePosition Node='-185' Position='-210,112,200,200'/><NodePosition Node='-192' Position='-241,204,200,200'/><NodePosition Node='-204' Position='-393,614,200,200'/><NodePosition Node='-229' Position='-684,438,200,200'/><NodePosition Node='-243' Position='-946,344,200,200'/><NodePosition Node='-247' Position='-262,318,200,200'/><NodePosition Node='-255' Position='-300,387,200,200'/><NodePosition Node='-225' Position='949.806640625,752.3868408203125,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2020-10-19 09:17:15.347265] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-10-19 09:17:15.353903] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:17:15.355028] INFO: moduleinvoker: instruments.v2 运行完成[0.007759s].
[2020-10-19 09:17:15.356626] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-10-19 09:17:15.361503] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:17:15.362419] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.005787s].
[2020-10-19 09:17:15.363715] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-10-19 09:17:15.368323] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:17:15.369310] INFO: moduleinvoker: input_features.v1 运行完成[0.005587s].
[2020-10-19 09:17:15.444565] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-10-19 09:17:15.456982] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:17:15.458410] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.01385s].
[2020-10-19 09:17:15.460238] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-10-19 09:17:15.466856] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:17:15.468052] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007808s].
[2020-10-19 09:17:15.469929] INFO: moduleinvoker: join.v3 开始运行..
[2020-10-19 09:17:15.474784] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:17:15.475770] INFO: moduleinvoker: join.v3 运行完成[0.005836s].
[2020-10-19 09:17:15.477434] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-10-19 09:17:15.482421] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:17:15.483573] INFO: moduleinvoker: dropnan.v2 运行完成[0.006122s].
[2020-10-19 09:17:15.488021] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2020-10-19 09:17:15.831386] INFO: StockRanker: 特征预处理 ..
[2020-10-19 09:17:16.818652] INFO: StockRanker: prepare data: training ..
[2020-10-19 09:17:17.461327] INFO: StockRanker: sort ..
[2020-10-19 09:17:24.199184] INFO: StockRanker训练: d2e1f81a 准备训练: 806424 行数
[2020-10-19 09:17:24.200920] INFO: StockRanker训练: AI模型训练,将在806424*4=322.57万数据上对模型训练进行20轮迭代训练。预计将需要2~4分钟。请耐心等待。
[2020-10-19 09:17:24.284366] INFO: StockRanker训练: 正在训练 ..
[2020-10-19 09:17:24.363696] INFO: StockRanker训练: 任务状态: Pending
[2020-10-19 09:17:34.405106] INFO: StockRanker训练: 任务状态: Running
[2020-10-19 09:17:44.445599] INFO: StockRanker训练: 00:00:08.2071614, finished iteration 1
[2020-10-19 09:17:44.447049] INFO: StockRanker训练: 00:00:14.6791504, finished iteration 2
[2020-10-19 09:17:54.481400] INFO: StockRanker训练: 00:00:21.1765269, finished iteration 3
[2020-10-19 09:18:04.520577] INFO: StockRanker训练: 00:00:27.7166896, finished iteration 4
[2020-10-19 09:18:04.522554] INFO: StockRanker训练: 00:00:34.3312873, finished iteration 5
[2020-10-19 09:18:14.556539] INFO: StockRanker训练: 00:00:40.9807140, finished iteration 6
[2020-10-19 09:18:24.593111] INFO: StockRanker训练: 00:00:47.7762302, finished iteration 7
[2020-10-19 09:18:24.595073] INFO: StockRanker训练: 00:00:54.6482893, finished iteration 8
[2020-10-19 09:18:34.639885] INFO: StockRanker训练: 00:01:01.5577361, finished iteration 9
[2020-10-19 09:18:44.674582] INFO: StockRanker训练: 00:01:08.5528007, finished iteration 10
[2020-10-19 09:18:44.676210] INFO: StockRanker训练: 00:01:15.7152593, finished iteration 11
[2020-10-19 09:18:54.710709] INFO: StockRanker训练: 00:01:22.9380870, finished iteration 12
[2020-10-19 09:19:04.749056] INFO: StockRanker训练: 00:01:30.4589081, finished iteration 13
[2020-10-19 09:19:14.782842] INFO: StockRanker训练: 00:01:37.9441313, finished iteration 14
[2020-10-19 09:19:14.784361] INFO: StockRanker训练: 00:01:45.5032204, finished iteration 15
[2020-10-19 09:19:24.819260] INFO: StockRanker训练: 00:01:52.9336557, finished iteration 16
[2020-10-19 09:19:34.855801] INFO: StockRanker训练: 00:02:00.4956279, finished iteration 17
[2020-10-19 09:19:44.893902] INFO: StockRanker训练: 00:02:08.0603684, finished iteration 18
[2020-10-19 09:19:44.895638] INFO: StockRanker训练: 00:02:15.6367345, finished iteration 19
[2020-10-19 09:19:54.936831] INFO: StockRanker训练: 00:02:23.1370488, finished iteration 20
[2020-10-19 09:19:54.938531] INFO: StockRanker训练: 任务状态: Succeeded
[2020-10-19 09:19:55.082482] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[159.594419s].
[2020-10-19 09:19:55.085015] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-10-19 09:19:55.137360] INFO: moduleinvoker: input_features.v1 运行完成[0.052323s].
[2020-10-19 09:19:55.143474] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-10-19 09:19:55.149669] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:19:55.151095] INFO: moduleinvoker: instruments.v2 运行完成[0.007623s].
[2020-10-19 09:19:55.157948] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-10-19 09:19:56.059785] INFO: 基础特征抽取: 年份 2018, 特征行数=210561
[2020-10-19 09:19:57.847359] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2020-10-19 09:19:58.362318] INFO: 基础特征抽取: 年份 2020, 特征行数=0
[2020-10-19 09:19:58.751108] INFO: 基础特征抽取: 总行数: 1095428
[2020-10-19 09:19:58.755051] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[3.597095s].
[2020-10-19 09:19:58.757089] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-10-19 09:19:59.092081] INFO: derived_feature_extractor: 提取完成 jin4=close_0 - open_0, 0.007s
[2020-10-19 09:19:59.214049] INFO: derived_feature_extractor: /y_2018, 210561
[2020-10-19 09:19:59.532306] INFO: derived_feature_extractor: /y_2019, 884867
[2020-10-19 09:20:00.487976] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[1.73084s].
[2020-10-19 09:20:00.490853] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-10-19 09:20:00.757692] INFO: dropnan: /y_2018, 210542/210561
[2020-10-19 09:20:01.808710] INFO: dropnan: /y_2019, 884658/884867
[2020-10-19 09:20:02.085567] INFO: dropnan: 行数: 1095200/1095428
[2020-10-19 09:20:02.096451] INFO: moduleinvoker: dropnan.v2 运行完成[1.605584s].
[2020-10-19 09:20:02.099513] INFO: moduleinvoker: filter.v3 开始运行..
[2020-10-19 09:20:02.128034] INFO: filter: 使用表达式 jin4>0 过滤
[2020-10-19 09:20:02.257719] INFO: filter: 过滤 /y_2018, 103634/0/210542
[2020-10-19 09:20:02.670792] INFO: filter: 过滤 /y_2019, 437221/0/884658
[2020-10-19 09:20:02.986317] INFO: moduleinvoker: filter.v3 运行完成[0.886795s].
[2020-10-19 09:20:02.989707] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2020-10-19 09:20:03.909794] INFO: StockRanker预测: /y_2018 ..
[2020-10-19 09:20:04.983672] INFO: StockRanker预测: /y_2019 ..
[2020-10-19 09:20:08.383251] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[5.393511s].
[2020-10-19 09:20:09.414982] INFO: moduleinvoker: backtest.v8 开始运行..
[2020-10-19 09:20:09.419553] INFO: backtest: biglearning backtest:V8.4.2
[2020-10-19 09:20:09.420666] INFO: backtest: product_type:stock by specified
[2020-10-19 09:20:09.530174] INFO: moduleinvoker: cached.v2 开始运行..
[2020-10-19 09:20:19.815623] INFO: backtest: 读取股票行情完成:1893451
[2020-10-19 09:20:23.482631] INFO: moduleinvoker: cached.v2 运行完成[13.952447s].
[2020-10-19 09:20:24.695298] INFO: algo: TradingAlgorithm V1.6.9
[2020-10-19 09:20:25.735181] INFO: algo: trading transform...
[2020-10-19 09:20:26.735408] INFO: algo: handle_splits get splits [dt:2019-05-17 00:00:00+00:00] [asset:Equity(2013 [603577.SHA]), ratio:0.99615079164505]
[2020-10-19 09:20:26.736705] INFO: Position: position stock handle split[sid:2013, orig_amount:1000, new_amount:1003.0, orig_cost:13.04000005083917, new_cost:12.9898, ratio:0.99615079164505, last_sale_price:12.9399995803833]
[2020-10-19 09:20:26.737734] INFO: Position: after split: PositionStock(asset:Equity(2013 [603577.SHA]), amount:1003.0, cost_basis:12.9898, last_sale_price:12.99000072479248)
[2020-10-19 09:20:26.738609] INFO: Position: returning cash: 11.1812
[2020-10-19 09:20:28.119230] INFO: Performance: Simulated 244 trading days out of 244.
[2020-10-19 09:20:28.120517] INFO: Performance: first open: 2019-01-02 09:30:00+00:00
[2020-10-19 09:20:28.121743] INFO: Performance: last close: 2019-12-31 15:00:00+00:00
[2020-10-19 09:20:33.314717] INFO: moduleinvoker: backtest.v8 运行完成[23.899728s].
[2020-10-19 09:20:33.316775] INFO: moduleinvoker: trade.v4 运行完成[24.930187s].
[2020-10-19 09:20:33.319145] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-10-19 09:20:33.325238] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:20:33.326572] INFO: moduleinvoker: instruments.v2 运行完成[0.007424s].
[2020-10-19 09:20:33.328421] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-10-19 09:20:33.334057] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:20:33.335102] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.006675s].
[2020-10-19 09:20:33.336577] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-10-19 09:20:33.341306] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:20:33.342203] INFO: moduleinvoker: input_features.v1 运行完成[0.005625s].
[2020-10-19 09:20:33.343589] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-10-19 09:20:33.348205] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:20:33.349043] INFO: moduleinvoker: input_features.v1 运行完成[0.00545s].
[2020-10-19 09:20:33.354903] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-10-19 09:20:34.012681] INFO: 基础特征抽取: 年份 2017, 特征行数=193398
[2020-10-19 09:20:35.509839] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2020-10-19 09:20:35.963369] INFO: 基础特征抽取: 年份 2019, 特征行数=0
[2020-10-19 09:20:36.224081] INFO: 基础特征抽取: 总行数: 1010385
[2020-10-19 09:20:36.230245] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[2.875319s].
[2020-10-19 09:20:36.232156] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-10-19 09:20:36.516423] INFO: derived_feature_extractor: 提取完成 jin4=close_0 - open_0, 0.004s
[2020-10-19 09:20:36.587661] INFO: derived_feature_extractor: /y_2017, 193398
[2020-10-19 09:20:36.853276] INFO: derived_feature_extractor: /y_2018, 816987
[2020-10-19 09:20:37.733752] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[1.501566s].
[2020-10-19 09:20:37.736336] INFO: moduleinvoker: join.v3 开始运行..
[2020-10-19 09:20:38.380329] INFO: join: /y_2017, 行数=0/193398, 耗时=0.3696s
[2020-10-19 09:20:39.571179] INFO: join: /y_2018, 行数=806430/816987, 耗时=1.186191s
[2020-10-19 09:20:39.988234] INFO: join: 最终行数: 806430
[2020-10-19 09:20:40.020129] INFO: moduleinvoker: join.v3 运行完成[2.283773s].
[2020-10-19 09:20:40.022910] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-10-19 09:20:40.063958] INFO: dropnan: /y_2017, 0/0
[2020-10-19 09:20:40.962573] INFO: dropnan: /y_2018, 806424/806430
[2020-10-19 09:20:41.234152] INFO: dropnan: 行数: 806424/806430
[2020-10-19 09:20:41.244705] INFO: moduleinvoker: dropnan.v2 运行完成[1.221782s].
[2020-10-19 09:20:41.246490] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2020-10-19 09:20:41.694488] INFO: StockRanker: 特征预处理 ..
[2020-10-19 09:20:42.028293] INFO: StockRanker: prepare data: training ..
[2020-10-19 09:20:42.793317] INFO: StockRanker: sort ..
[2020-10-19 09:20:49.338041] INFO: StockRanker训练: 4d8ac6d2 准备训练: 806424 行数
[2020-10-19 09:20:49.339222] INFO: StockRanker训练: AI模型训练,将在806424*4=322.57万数据上对模型训练进行20轮迭代训练。预计将需要2~4分钟。请耐心等待。
[2020-10-19 09:20:49.358118] INFO: StockRanker训练: 正在训练 ..
[2020-10-19 09:20:49.408876] INFO: StockRanker训练: 任务状态: Pending
[2020-10-19 09:20:59.444406] INFO: StockRanker训练: 任务状态: Running
[2020-10-19 09:21:09.478297] INFO: StockRanker训练: 00:00:08.1605583, finished iteration 1
[2020-10-19 09:21:09.479478] INFO: StockRanker训练: 00:00:14.6180183, finished iteration 2
[2020-10-19 09:21:19.526074] INFO: StockRanker训练: 00:00:21.1064929, finished iteration 3
[2020-10-19 09:21:29.563529] INFO: StockRanker训练: 00:00:27.6525338, finished iteration 4
[2020-10-19 09:21:29.565148] INFO: StockRanker训练: 00:00:34.2893192, finished iteration 5
[2020-10-19 09:21:39.598944] INFO: StockRanker训练: 00:00:40.9650214, finished iteration 6
[2020-10-19 09:21:49.640494] INFO: StockRanker训练: 00:00:47.9079590, finished iteration 7
[2020-10-19 09:21:49.641651] INFO: StockRanker训练: 00:00:54.7883720, finished iteration 8
[2020-10-19 09:21:59.676349] INFO: StockRanker训练: 00:01:01.7207653, finished iteration 9
[2020-10-19 09:22:09.711303] INFO: StockRanker训练: 00:01:08.8625450, finished iteration 10
[2020-10-19 09:22:09.713230] INFO: StockRanker训练: 00:01:15.9629242, finished iteration 11
[2020-10-19 09:22:19.749816] INFO: StockRanker训练: 00:01:23.0840056, finished iteration 12
[2020-10-19 09:22:29.786499] INFO: StockRanker训练: 00:01:30.5638073, finished iteration 13
[2020-10-19 09:22:39.820332] INFO: StockRanker训练: 00:01:38.0395249, finished iteration 14
[2020-10-19 09:22:39.821949] INFO: StockRanker训练: 00:01:45.4917661, finished iteration 15
[2020-10-19 09:22:49.862550] INFO: StockRanker训练: 00:01:52.7632459, finished iteration 16
[2020-10-19 09:22:59.897380] INFO: StockRanker训练: 00:02:00.3948108, finished iteration 17
[2020-10-19 09:23:09.931278] INFO: StockRanker训练: 00:02:07.9574828, finished iteration 18
[2020-10-19 09:23:09.932961] INFO: StockRanker训练: 00:02:15.5234539, finished iteration 19
[2020-10-19 09:23:19.971276] INFO: StockRanker训练: 00:02:23.0164767, finished iteration 20
[2020-10-19 09:23:19.972556] INFO: StockRanker训练: 任务状态: Succeeded
[2020-10-19 09:23:20.127749] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[158.88126s].
[2020-10-19 09:23:20.129580] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-10-19 09:23:20.135747] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:23:20.137060] INFO: moduleinvoker: instruments.v2 运行完成[0.007474s].
[2020-10-19 09:23:20.142495] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-10-19 09:23:20.146741] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:23:20.147619] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.005121s].
[2020-10-19 09:23:20.149299] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-10-19 09:23:20.153609] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:23:20.154434] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.005131s].
[2020-10-19 09:23:20.156053] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-10-19 09:23:20.160238] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:23:20.161101] INFO: moduleinvoker: dropnan.v2 运行完成[0.005043s].
[2020-10-19 09:23:20.162761] INFO: moduleinvoker: filter.v3 开始运行..
[2020-10-19 09:23:20.167567] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:23:20.168425] INFO: moduleinvoker: filter.v3 运行完成[0.005658s].
[2020-10-19 09:23:20.170124] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2020-10-19 09:23:20.870522] INFO: StockRanker预测: /y_2018 ..
[2020-10-19 09:23:21.995191] INFO: StockRanker预测: /y_2019 ..
[2020-10-19 09:23:24.670645] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[4.500484s].
[2020-10-19 09:23:24.721187] INFO: moduleinvoker: backtest.v8 开始运行..
[2020-10-19 09:23:24.726195] INFO: backtest: biglearning backtest:V8.4.2
[2020-10-19 09:23:24.727744] INFO: backtest: product_type:stock by specified
[2020-10-19 09:23:24.865165] INFO: moduleinvoker: cached.v2 开始运行..
[2020-10-19 09:23:24.870437] INFO: moduleinvoker: 命中缓存
[2020-10-19 09:23:24.871479] INFO: moduleinvoker: cached.v2 运行完成[0.006323s].
[2020-10-19 09:23:26.052604] INFO: algo: TradingAlgorithm V1.6.9
[2020-10-19 09:23:26.958230] INFO: algo: trading transform...
[2020-10-19 09:23:27.977315] INFO: algo: handle_splits get splits [dt:2019-05-17 00:00:00+00:00] [asset:Equity(2013 [603577.SHA]), ratio:0.99615079164505]
[2020-10-19 09:23:27.978507] INFO: Position: position stock handle split[sid:2013, orig_amount:1000, new_amount:1003.0, orig_cost:13.04000005083917, new_cost:12.9898, ratio:0.99615079164505, last_sale_price:12.9399995803833]
[2020-10-19 09:23:27.979414] INFO: Position: after split: PositionStock(asset:Equity(2013 [603577.SHA]), amount:1003.0, cost_basis:12.9898, last_sale_price:12.99000072479248)
[2020-10-19 09:23:27.980381] INFO: Position: returning cash: 11.1812
[2020-10-19 09:23:29.474298] INFO: Performance: Simulated 244 trading days out of 244.
[2020-10-19 09:23:29.475422] INFO: Performance: first open: 2019-01-02 09:30:00+00:00
[2020-10-19 09:23:29.476267] INFO: Performance: last close: 2019-12-31 15:00:00+00:00
[2020-10-19 09:23:34.266074] INFO: moduleinvoker: backtest.v8 运行完成[9.5449s].
[2020-10-19 09:23:34.267542] INFO: moduleinvoker: trade.v4 运行完成[9.594301s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-e91eb29e59964268a37b401950b11ea0"}/bigcharts-data-end
- 收益率-22.78%
- 年化收益率-23.43%
- 基准收益率36.07%
- 阿尔法-0.5
- 贝塔0.94
- 夏普比率-0.53
- 胜率0.57
- 盈亏比0.67
- 收益波动率40.26%
- 信息比率-0.09
- 最大回撤43.26%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-25622311fc9644779ab504b6b04402aa"}/bigcharts-data-end
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-a39867bc6c084df286802e710e29661a"}/bigcharts-data-end
- 收益率-22.78%
- 年化收益率-23.43%
- 基准收益率36.07%
- 阿尔法-0.5
- 贝塔0.94
- 夏普比率-0.53
- 胜率0.57
- 盈亏比0.67
- 收益波动率40.26%
- 信息比率-0.09
- 最大回撤43.26%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-07fa9608e88d41c28ae30a49d00fb9df"}/bigcharts-data-end