克隆策略

浅谈小市值策略

版本 v1.0

目录

策略交易规则

策略构建步骤

正文

一、小市值策略的交易规则

每月月初买入市值最小的30只股票并且成交额满足一定条件的股票,持有至下个月月初再调仓,等权重买,无单只股票仓位上限控制、无止盈止损。

二、策略构建步骤

1、确定股票池和回测时间 通过证券代码列表输入要回测的股票,以及回测的起止日期。

2、确定买卖原则

每月月初买入市值最小的30只股票并且成交额满足一定条件的股票,持有至下个月月初再调仓

3、模拟回测

通过 trade 模块中的初始化函数定义交易手续费。
通过 trade 模块中的主函数(handle函数)实现交易规则,并打印交易日志。

    {"description":"实验创建于2019/4/20","graph":{"edges":[{"to_node_id":"-299:instruments","from_node_id":"-290:data"},{"to_node_id":"-32:instruments","from_node_id":"-290:data"},{"to_node_id":"-299:features","from_node_id":"-286:data"},{"to_node_id":"-606:input_ds","from_node_id":"-299:data"},{"to_node_id":"-53:input_data","from_node_id":"-606:sorted_data"},{"to_node_id":"-32:options_data","from_node_id":"-53:data"}],"nodes":[{"node_id":"-290","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-11-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-290"}],"output_ports":[{"name":"data","node_id":"-290"}],"cacheable":true,"seq_num":1,"comment":"输入证券","comment_collapsed":true},{"node_id":"-286","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"market_cap_float_0\namount_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-286"}],"output_ports":[{"name":"data","node_id":"-286"}],"cacheable":true,"seq_num":2,"comment":"输入特征","comment_collapsed":true},{"node_id":"-299","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"60","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-299"},{"name":"features","node_id":"-299"}],"output_ports":[{"name":"data","node_id":"-299"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-606","module_id":"BigQuantSpace.sort.sort-v4","parameters":[{"name":"sort_by","value":"market_cap_float_0","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-606"},{"name":"sort_by_ds","node_id":"-606"}],"output_ports":[{"name":"sorted_data","node_id":"-606"}],"cacheable":true,"seq_num":4,"comment":"依据某个因子排序","comment_collapsed":true},{"node_id":"-32","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载股票指标数据,数据继承自m6模块\n context.indicator_data = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n \n # 设置股票数量\n context.stock_num = 30\n \n # 调仓天数,22个交易日大概就是一个月。可以理解为一个月换仓一次\n context.rebalance_days = 22\n \n # 如果策略运行中,需要将数据进行保存,可以借用extension这个对象,类型为dict\n # 比如当前运行的k线的索引,比如个股持仓天数、买入均价\n if 'index' not in context.extension:\n context.extension['index'] = 0\n \n \n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n \n context.extension['index'] += 1\n # 不在换仓日就return,相当于后面的代码只会一个月运行一次,买入的股票会持有1个月\n if context.extension['index'] % context.rebalance_days != 0:\n return \n \n # 当前的日期\n date = data.current_dt.strftime('%Y-%m-%d')\n \n cur_data = context.indicator_data[context.indicator_data['date'] == date]\n # 根据日期获取调仓需要买入的股票的列表\n stock_to_buy = list(cur_data.instrument[:context.stock_num])\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions]\n # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 需要卖出的股票\n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]\n \n # 卖出\n for stock in stock_to_sell:\n # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态\n # 如果返回真值,则可以正常下单,否则会出错\n # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式\n\n if data.can_trade(context.symbol(stock)):\n # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,\n # 即卖出全部股票,可参考回测文档\n context.order_target_percent(context.symbol(stock), 0)\n \n # 如果当天没有买入的股票,就返回\n if len(stock_to_buy) == 0:\n return\n\n # 等权重买入 \n weight = 1 / len(stock_to_buy)\n \n # 买入\n for stock in stock_to_buy:\n if data.can_trade(context.symbol(stock)):\n # 下单使得某只股票的持仓权重达到weight,因为\n # weight大于0,因此是等权重买入\n context.order_target_percent(context.symbol(stock), weight)\n ","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-32"},{"name":"options_data","node_id":"-32"},{"name":"history_ds","node_id":"-32"},{"name":"benchmark_ds","node_id":"-32"},{"name":"trading_calendar","node_id":"-32"}],"output_ports":[{"name":"raw_perf","node_id":"-32"}],"cacheable":false,"seq_num":5,"comment":"回测","comment_collapsed":true},{"node_id":"-53","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"amount_0 > 10000","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-53"}],"output_ports":[{"name":"data","node_id":"-53"},{"name":"left_data","node_id":"-53"}],"cacheable":true,"seq_num":6,"comment":"过滤掉不需要的股票数据","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-290' Position='-40,17,200,200'/><node_position Node='-286' Position='343,15,200,200'/><node_position Node='-299' Position='225,137,200,200'/><node_position Node='-606' Position='229,224,200,200'/><node_position Node='-32' Position='177,399,200,200'/><node_position Node='-53' Position='215,304,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [5]:
    # 本代码由可视化策略环境自动生成 2021年11月29日 16:29
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m5_initialize_bigquant_run(context):
        # 加载股票指标数据,数据继承自m6模块
        context.indicator_data = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        
        # 设置股票数量
        context.stock_num = 30
        
        # 调仓天数,22个交易日大概就是一个月。可以理解为一个月换仓一次
        context.rebalance_days = 22
        
        # 如果策略运行中,需要将数据进行保存,可以借用extension这个对象,类型为dict
        # 比如当前运行的k线的索引,比如个股持仓天数、买入均价
        if 'index' not in context.extension:
            context.extension['index'] = 0
     
        
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m5_handle_data_bigquant_run(context, data):
        
        
        context.extension['index'] += 1
        # 不在换仓日就return,相当于后面的代码只会一个月运行一次,买入的股票会持有1个月
        if  context.extension['index'] % context.rebalance_days != 0:
            return 
        
        # 当前的日期
        date = data.current_dt.strftime('%Y-%m-%d')
        
        cur_data = context.indicator_data[context.indicator_data['date'] == date]
        # 根据日期获取调仓需要买入的股票的列表
        stock_to_buy = list(cur_data.instrument[:context.stock_num])
        # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        stock_hold_now = [equity.symbol for equity in context.portfolio.positions]
        # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有
        no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]
        # 需要卖出的股票
        stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]
      
        # 卖出
        for stock in stock_to_sell:
            # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态
            # 如果返回真值,则可以正常下单,否则会出错
            # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式
    
            if data.can_trade(context.symbol(stock)):
                # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,
                #   即卖出全部股票,可参考回测文档
                context.order_target_percent(context.symbol(stock), 0)
        
        # 如果当天没有买入的股票,就返回
        if len(stock_to_buy) == 0:
            return
    
        # 等权重买入 
        weight =  1 / len(stock_to_buy)
        
        # 买入
        for stock in stock_to_buy:
            if data.can_trade(context.symbol(stock)):
                # 下单使得某只股票的持仓权重达到weight,因为
                # weight大于0,因此是等权重买入
                context.order_target_percent(context.symbol(stock), weight)
     
    # 回测引擎:准备数据,只执行一次
    def m5_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m5_before_trading_start_bigquant_run(context, data):
        pass
    
    
    m1 = M.instruments.v2(
        start_date='2018-01-01',
        end_date='2021-11-01',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.input_features.v1(
        features="""market_cap_float_0
    amount_0"""
    )
    
    m3 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m2.data,
        start_date='',
        end_date='',
        before_start_days=60
    )
    
    m4 = M.sort.v4(
        input_ds=m3.data,
        sort_by='market_cap_float_0',
        group_by='instrument',
        keep_columns='--',
        ascending=True
    )
    
    m6 = M.filter.v3(
        input_data=m4.sorted_data,
        expr='amount_0 > 10000',
        output_left_data=False
    )
    
    m5 = M.trade.v4(
        instruments=m1.data,
        options_data=m6.data,
        start_date='',
        end_date='',
        initialize=m5_initialize_bigquant_run,
        handle_data=m5_handle_data_bigquant_run,
        prepare=m5_prepare_bigquant_run,
        before_trading_start=m5_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='open',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark=''
    )
    
    • 收益率48.76%
    • 年化收益率11.38%
    • 基准收益率21.33%
    • 阿尔法0.08
    • 贝塔0.59
    • 夏普比率0.46
    • 胜率0.57
    • 盈亏比1.91
    • 收益波动率22.97%
    • 信息比率0.02
    • 最大回撤30.81%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4f0eb075a7864860bd093237eff31779"}/bigcharts-data-end