{"description":"实验创建于2019/4/20","graph":{"edges":[{"to_node_id":"-299:instruments","from_node_id":"-290:data"},{"to_node_id":"-32:instruments","from_node_id":"-290:data"},{"to_node_id":"-299:features","from_node_id":"-286:data"},{"to_node_id":"-606:input_ds","from_node_id":"-299:data"},{"to_node_id":"-53:input_data","from_node_id":"-606:sorted_data"},{"to_node_id":"-32:options_data","from_node_id":"-53:data"}],"nodes":[{"node_id":"-290","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-11-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-290"}],"output_ports":[{"name":"data","node_id":"-290"}],"cacheable":true,"seq_num":1,"comment":"输入证券","comment_collapsed":true},{"node_id":"-286","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"market_cap_float_0\namount_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-286"}],"output_ports":[{"name":"data","node_id":"-286"}],"cacheable":true,"seq_num":2,"comment":"输入特征","comment_collapsed":true},{"node_id":"-299","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"60","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-299"},{"name":"features","node_id":"-299"}],"output_ports":[{"name":"data","node_id":"-299"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-606","module_id":"BigQuantSpace.sort.sort-v4","parameters":[{"name":"sort_by","value":"market_cap_float_0","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-606"},{"name":"sort_by_ds","node_id":"-606"}],"output_ports":[{"name":"sorted_data","node_id":"-606"}],"cacheable":true,"seq_num":4,"comment":"依据某个因子排序","comment_collapsed":true},{"node_id":"-32","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载股票指标数据,数据继承自m6模块\n context.indicator_data = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n \n # 设置股票数量\n context.stock_num = 30\n \n # 调仓天数,22个交易日大概就是一个月。可以理解为一个月换仓一次\n context.rebalance_days = 22\n \n # 如果策略运行中,需要将数据进行保存,可以借用extension这个对象,类型为dict\n # 比如当前运行的k线的索引,比如个股持仓天数、买入均价\n if 'index' not in context.extension:\n context.extension['index'] = 0\n \n \n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n \n context.extension['index'] += 1\n # 不在换仓日就return,相当于后面的代码只会一个月运行一次,买入的股票会持有1个月\n if context.extension['index'] % context.rebalance_days != 0:\n return \n \n # 当前的日期\n date = data.current_dt.strftime('%Y-%m-%d')\n \n cur_data = context.indicator_data[context.indicator_data['date'] == date]\n # 根据日期获取调仓需要买入的股票的列表\n stock_to_buy = list(cur_data.instrument[:context.stock_num])\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions]\n # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 需要卖出的股票\n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]\n \n # 卖出\n for stock in stock_to_sell:\n # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态\n # 如果返回真值,则可以正常下单,否则会出错\n # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式\n\n if data.can_trade(context.symbol(stock)):\n # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,\n # 即卖出全部股票,可参考回测文档\n context.order_target_percent(context.symbol(stock), 0)\n \n # 如果当天没有买入的股票,就返回\n if len(stock_to_buy) == 0:\n return\n\n # 等权重买入 \n weight = 1 / len(stock_to_buy)\n \n # 买入\n for stock in stock_to_buy:\n if data.can_trade(context.symbol(stock)):\n # 下单使得某只股票的持仓权重达到weight,因为\n # weight大于0,因此是等权重买入\n context.order_target_percent(context.symbol(stock), weight)\n ","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-32"},{"name":"options_data","node_id":"-32"},{"name":"history_ds","node_id":"-32"},{"name":"benchmark_ds","node_id":"-32"},{"name":"trading_calendar","node_id":"-32"}],"output_ports":[{"name":"raw_perf","node_id":"-32"}],"cacheable":false,"seq_num":5,"comment":"回测","comment_collapsed":true},{"node_id":"-53","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"amount_0 > 10000","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-53"}],"output_ports":[{"name":"data","node_id":"-53"},{"name":"left_data","node_id":"-53"}],"cacheable":true,"seq_num":6,"comment":"过滤掉不需要的股票数据","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-290' Position='-40,17,200,200'/><node_position Node='-286' Position='343,15,200,200'/><node_position Node='-299' Position='225,137,200,200'/><node_position Node='-606' Position='229,224,200,200'/><node_position Node='-32' Position='177,399,200,200'/><node_position Node='-53' Position='215,304,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-11-29 14:46:57.895453] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-11-29 14:46:57.903097] INFO: moduleinvoker: 命中缓存
[2021-11-29 14:46:57.904684] INFO: moduleinvoker: instruments.v2 运行完成[0.009235s].
[2021-11-29 14:46:57.908364] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-11-29 14:46:57.914459] INFO: moduleinvoker: 命中缓存
[2021-11-29 14:46:57.915785] INFO: moduleinvoker: input_features.v1 运行完成[0.007422s].
[2021-11-29 14:46:57.928866] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-11-29 14:46:57.934639] INFO: moduleinvoker: 命中缓存
[2021-11-29 14:46:57.936307] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007462s].
[2021-11-29 14:46:57.941912] INFO: moduleinvoker: sort.v4 开始运行..
[2021-11-29 14:46:57.948301] INFO: moduleinvoker: 命中缓存
[2021-11-29 14:46:57.949735] INFO: moduleinvoker: sort.v4 运行完成[0.00783s].
[2021-11-29 14:46:57.957618] INFO: moduleinvoker: filter.v3 开始运行..
[2021-11-29 14:46:57.978642] INFO: filter: 使用表达式 amount_0 > 10000 过滤
[2021-11-29 14:46:59.425634] INFO: filter: 过滤 /data, 3642127/0/3642266
[2021-11-29 14:46:59.471351] INFO: moduleinvoker: filter.v3 运行完成[1.513718s].
[2021-11-29 14:47:01.622444] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-11-29 14:47:01.628388] INFO: backtest: biglearning backtest:V8.5.2
[2021-11-29 14:47:01.629599] INFO: backtest: product_type:stock by specified
[2021-11-29 14:47:01.632939] INFO: backtest: 其它市场:{'SZA'}
[2021-11-29 14:47:01.749852] INFO: moduleinvoker: cached.v2 开始运行..
[2021-11-29 14:47:15.991446] INFO: backtest: 读取股票行情完成:4716449
[2021-11-29 14:47:23.516235] INFO: moduleinvoker: cached.v2 运行完成[21.766387s].
[2021-11-29 14:47:27.818407] INFO: algo: TradingAlgorithm V1.8.5
[2021-11-29 14:47:30.031329] INFO: algo: trading transform...
[2021-11-29 14:47:43.469110] INFO: Performance: Simulated 929 trading days out of 929.
[2021-11-29 14:47:43.470686] INFO: Performance: first open: 2018-01-02 09:30:00+00:00
[2021-11-29 14:47:43.471760] INFO: Performance: last close: 2021-11-01 15:00:00+00:00
[2021-11-29 14:47:53.712736] INFO: moduleinvoker: backtest.v8 运行完成[52.090274s].
[2021-11-29 14:47:53.715126] INFO: moduleinvoker: trade.v4 运行完成[54.226202s].
- 收益率48.76%
- 年化收益率11.38%
- 基准收益率21.33%
- 阿尔法0.08
- 贝塔0.59
- 夏普比率0.46
- 胜率0.57
- 盈亏比1.91
- 收益波动率22.97%
- 信息比率0.02
- 最大回撤30.81%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4f0eb075a7864860bd093237eff31779"}/bigcharts-data-end