{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-274:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-274:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-6060:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-288:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-6060:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-623:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-633:input_data","from_node_id":"-86:data"},{"to_node_id":"-281:input_data","from_node_id":"-274:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"-295:input_data","from_node_id":"-288:data"},{"to_node_id":"-86:input_data","from_node_id":"-295:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"-623:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-633:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-10-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n# ts_rank(turn_0, 5)\n\nreturn_0\nbm_ret=cal_bm_return()\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"1000","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"20","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.5","type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-21","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-02-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-274","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-274"},{"name":"features","node_id":"-274"}],"output_ports":[{"name":"data","node_id":"-274"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"def cal_bm_return(df):\n bm_df = DataSource('bar1d_index_CN_STOCK_A').read(instruments=['000001.HIX'])\n bm_df[\"bm_ret\"] = bm_df[\"close\"]/bm_df[\"close\"].shift(10)-1\n merge_df = pd.merge(df, bm_df[['date','bm_ret']], on='date', how='left')\n return merge_df['bm_ret']\n\n\nbigquant_run = {\n 'cal_bm_return': cal_bm_return,\n}\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"60","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-6060","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 设置每只股票占用的最大资金比例\n context.order_pct = 0.1\n\n #大盘数据获取\n bm_df = DataSource('bar1d_index_CN_STOCK_A').read(instruments=['000001.HIX'])\n bm_df[\"bm_ret\"] = bm_df[\"close\"]/bm_df[\"close\"].shift(10)-1\n bm_df[\"bm_ret\"] = bm_df[\"bm_ret\"].shift(1) #取昨日的收益情况\n context.bm_df = bm_df[['date','bm_ret']]\n \n #个股风控计算\n start_date = context.ranker_prediction.date.iloc[0]\n start_date = pd.to_datetime(start_date)-timedelta(days=30)\n end_date = context.ranker_prediction.date.iloc[-1]\n stocks = context.ranker_prediction.instrument.to_list()\n data = DataSource(\"bar1d_CN_STOCK_A\").read(instruments=stocks,start_date=start_date.strftime(\"%Y-%m-%d\"),end_date=end_date)\n #计算个股风控,小于20日均线\n def cal_risk(df):\n df = df.sort_values(\"date\")\n df[\"ma\"] = df.close.rolling(20).mean()\n df[\"risk\"] = np.where(df.close.shift(1)<df.ma.shift(1),1,0)\n return df\n context.stock_risk_data = data.groupby(\"instrument\").apply(cal_risk).reset_index(drop=True)\n\n\n\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 每10天执行一次\n# if context.trading_day_index % 2 != 0:\n# return\n \n if(context.bm_risk==1):\n print(\"触发大盘风控,每日处理函数直接返回!\")\n return\n today = data.current_dt.strftime('%Y-%m-%d') \n\n #====卖出股票\n stock_hold_now = [e.symbol for e, _ in context.perf_tracker.position_tracker.positions.items()]\n print(today,\"=======卖出的股票:\",stock_hold_now)\n for instr in stock_hold_now:\n context.order_target(context.symbol(instr), 0) #卖出\n \n #买入股票\n ranker_prediction = context.ranker_prediction[context.ranker_prediction.date == today]\n #取排名靠前的前5只\n today_to_buy = list(ranker_prediction.instrument[:5])\n print(today,\"=======买入的股票 {}\".format(today_to_buy))\n \n # 获取账户资金\n total_portfolio = context.portfolio.portfolio_value\n \n for instr in today_to_buy:\n #最新价格\n price = data.current(context.symbol(instr), 'close')\n #计算买入此股票的数量,不要超过总资金的某个比例\n order_num = int(total_portfolio*context.order_pct/price/100)*100\n context.order_target(context.symbol(instr), order_num) # 买入\n print(\"{} 买入{} 最新价={} 下单量={}\".format(today,instr,str(price),order_num))\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"from zipline.finance.order import Order\n\n#插入定单\ndef insert_order(context,date,instr,amount):\n order = Order(\n dt = pd.to_datetime(date+\" 09:30:00\"),\n asset=context.symbol(instr),\n amount=-amount,\n stop=None,\n limit=None,\n price_field='open')\n\n try:\n context.blotter.open_orders[order.asset].append(order)\n except Exception:\n context.blotter.open_orders[order.asset] = [order]\n\n context.blotter.orders[order.id] = order\n context.blotter.new_orders.append(order) \n \n#个股风控判断\ndef stock_risk(context, data):\n today=data.current_dt.strftime('%Y-%m-%d')\n #====卖出股票\n stock_hold_now = {e.symbol:p.amount for e, p in context.perf_tracker.position_tracker.positions.items()}\n stocks = stock_hold_now.keys()\n\n for instr,amount in stock_hold_now.items():\n nowdata = context.stock_risk_data[(context.stock_risk_data.instrument==instr)&(context.stock_risk_data.date==today)]\n #触发个股风控,早盘卖出\n if nowdata.risk.iloc[0] == 1 and amount>0:\n print(today,'个股风控卖出:',instr) \n insert_order(context,today,instr,amount)\n \n#主函数\ndef bigquant_run(context, data):\n today=data.current_dt.strftime('%Y-%m-%d')\n now_bm = context.bm_df[context.bm_df.date==today]\n #个股风控\n stock_risk(context,data)\n context.bm_risk = 0\n #大盘风控判断\n if(now_bm.bm_ret.iloc[0]<-0.01):\n context.bm_risk = 1\n # 得到当前未完成订单\n for orders in get_open_orders().values():\n # 循环,撤销订单\n for _order in orders:\n ins=str(_order.sid.symbol)\n if data.can_trade(_order.sid) and _order.amount>0:\n #大盘风控取消买单\n cancel_order(_order)\n print(today,'大盘风控取消买单',ins) \n if data.can_trade(_order.sid) and _order.amount<0:#卖单由后续统一处理,先取消\n #大盘风控取消卖单\n cancel_order(_order)\n print(today,'大盘风控取消卖单',ins) \n \n #====卖出股票\n stock_hold_now = {e.symbol:p.amount for e, p in context.perf_tracker.position_tracker.positions.items()}\n print(today,\"=======风控卖出所有的股票:\",stock_hold_now)\n for instr,amount in stock_hold_now.items():\n #插入定单\n insert_order(context,today,instr,amount)\n ","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-6060"},{"name":"options_data","node_id":"-6060"},{"name":"history_ds","node_id":"-6060"},{"name":"benchmark_ds","node_id":"-6060"},{"name":"trading_calendar","node_id":"-6060"}],"output_ports":[{"name":"raw_perf","node_id":"-6060"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-623","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-623"}],"output_ports":[{"name":"data","node_id":"-623"},{"name":"left_data","node_id":"-623"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-633","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-633"}],"output_ports":[{"name":"data","node_id":"-633"},{"name":"left_data","node_id":"-633"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='166,-50,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-6,147,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='630,-50,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='361,557,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='109,307,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='767.4412231445312,650.4412231445312,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1150,-59,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='214,390,200,200'/><node_position Node='-86' Position='1099,389,200,200'/><node_position Node='-274' Position='339,85,200,200'/><node_position Node='-281' Position='345,225,200,200'/><node_position Node='-288' Position='1051,99,200,200'/><node_position Node='-295' Position='1046,260,200,200'/><node_position Node='-6060' Position='692.441162109375,768.1175842285156,200,200'/><node_position Node='-623' Position='223,477,200,200'/><node_position Node='-633' Position='1159,491,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-08-31 10:58:46.753523] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-08-31 10:58:46.923459] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:46.926229] INFO: moduleinvoker: instruments.v2 运行完成[0.172702s].
[2021-08-31 10:58:46.929913] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-08-31 10:58:46.945444] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:46.947218] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.01731s].
[2021-08-31 10:58:46.949412] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-08-31 10:58:46.957643] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:46.959972] INFO: moduleinvoker: input_features.v1 运行完成[0.010558s].
[2021-08-31 10:58:46.977293] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-08-31 10:58:46.984064] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:46.985793] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.008537s].
[2021-08-31 10:58:46.991797] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-08-31 10:58:46.997559] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:46.999379] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007597s].
[2021-08-31 10:58:47.002776] INFO: moduleinvoker: join.v3 开始运行..
[2021-08-31 10:58:47.009378] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.011289] INFO: moduleinvoker: join.v3 运行完成[0.008513s].
[2021-08-31 10:58:47.015289] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-08-31 10:58:47.022494] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.024353] INFO: moduleinvoker: dropnan.v1 运行完成[0.009065s].
[2021-08-31 10:58:47.028057] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2021-08-31 10:58:47.037244] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.039343] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[0.01127s].
[2021-08-31 10:58:47.042552] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2021-08-31 10:58:47.053506] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.164576] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[0.122014s].
[2021-08-31 10:58:47.168125] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-08-31 10:58:47.178157] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.180089] INFO: moduleinvoker: instruments.v2 运行完成[0.011962s].
[2021-08-31 10:58:47.188532] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-08-31 10:58:47.196135] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.198282] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.009766s].
[2021-08-31 10:58:47.201462] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-08-31 10:58:47.210662] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.212347] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010881s].
[2021-08-31 10:58:47.215800] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-08-31 10:58:47.221821] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.223089] INFO: moduleinvoker: dropnan.v1 运行完成[0.007293s].
[2021-08-31 10:58:47.226882] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2021-08-31 10:58:47.234778] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.236189] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[0.009332s].
[2021-08-31 10:58:47.239847] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2021-08-31 10:58:47.249230] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.251381] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.011522s].
[2021-08-31 10:58:47.317399] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-08-31 10:58:47.322741] INFO: backtest: biglearning backtest:V8.5.0
[2021-08-31 10:58:47.324070] INFO: backtest: product_type:stock by specified
[2021-08-31 10:58:47.822261] INFO: moduleinvoker: cached.v2 开始运行..
[2021-08-31 10:58:47.831469] INFO: moduleinvoker: 命中缓存
[2021-08-31 10:58:47.834379] INFO: moduleinvoker: cached.v2 运行完成[0.012132s].
[2021-08-31 10:58:49.417974] INFO: algo: TradingAlgorithm V1.8.5
[2021-08-31 10:59:14.382426] INFO: algo: trading transform...
[2021-08-31 10:59:16.322255] INFO: Performance: Simulated 8 trading days out of 8.
[2021-08-31 10:59:16.324449] INFO: Performance: first open: 2021-01-21 09:30:00+00:00
[2021-08-31 10:59:16.325479] INFO: Performance: last close: 2021-02-01 15:00:00+00:00
[2021-08-31 10:59:19.994404] INFO: moduleinvoker: backtest.v8 运行完成[32.677012s].
[2021-08-31 10:59:19.996005] INFO: moduleinvoker: trade.v4 运行完成[32.741496s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-5ca536854c54438c88fcf4442aeacb1b"}/bigcharts-data-end
2021-01-21 =======卖出的股票: []
2021-01-21 =======买入的股票 ['600496.SHA', '600650.SHA', '688089.SHA', '002978.SZA', '002980.SZA']
2021-01-21 买入600496.SHA 最新价=53.81652 下单量=185800
2021-01-21 买入600650.SHA 最新价=36.925148 下单量=270800
2021-01-21 买入688089.SHA 最新价=39.786358 下单量=251300
2021-01-21 买入002978.SZA 最新价=45.525936 下单量=219600
2021-01-21 买入002980.SZA 最新价=45.70997 下单量=218700
2021-01-22 =======卖出的股票: ['600496.SHA', '600650.SHA', '688089.SHA', '002978.SZA', '002980.SZA']
2021-01-22 =======买入的股票 ['300708.SZA', '603233.SHA', '603613.SHA', '002100.SZA', '002797.SZA']
2021-01-22 买入300708.SZA 最新价=24.31698 下单量=410500
2021-01-22 买入603233.SHA 最新价=158.9186 下单量=62800
2021-01-22 买入603613.SHA 最新价=238.07945 下单量=41900
2021-01-22 买入002100.SZA 最新价=130.10913 下单量=76700
2021-01-22 买入002797.SZA 最新价=13.357279 下单量=747400
2021-01-25 个股风控卖出: 600650.SHA
2021-01-25 =======卖出的股票: ['600650.SHA', '300708.SZA', '603233.SHA', '603613.SHA', '002100.SZA', '002797.SZA']
2021-01-25 =======买入的股票 ['600163.SHA', '600292.SHA', '688557.SHA', '600835.SHA', '002221.SZA']
2021-01-25 买入600163.SHA 最新价=10.061796 下单量=988700
2021-01-25 买入600292.SHA 最新价=26.495672 下单量=375400
2021-01-25 买入688557.SHA 最新价=37.04 下单量=268500
2021-01-25 买入600835.SHA 最新价=114.81151 下单量=86600
2021-01-25 买入002221.SZA 最新价=46.613247 下单量=213400
2021-01-26 个股风控卖出: 300708.SZA
2021-01-26 个股风控卖出: 002100.SZA
2021-01-26 个股风控卖出: 002797.SZA
2021-01-26 =======卖出的股票: ['300708.SZA', '002100.SZA', '002797.SZA', '600163.SHA', '600292.SHA', '688557.SHA', '600835.SHA', '002221.SZA']
2021-01-26 =======买入的股票 ['002274.SZA', '603408.SHA', '600624.SHA', '605169.SHA', '600128.SHA']
2021-01-26 买入002274.SZA 最新价=15.133812 下单量=648800
2021-01-26 买入603408.SHA 最新价=15.49673 下单量=633600
2021-01-26 买入600624.SHA 最新价=140.63109 下单量=69800
2021-01-26 买入605169.SHA 最新价=20.52 下单量=478500
2021-01-26 买入600128.SHA 最新价=18.40585 下单量=533400
2021-01-27 个股风控卖出: 600292.SHA
2021-01-27 个股风控卖出: 688557.SHA
2021-01-27 个股风控卖出: 600835.SHA
2021-01-27 大盘风控取消买单 300708.SZA
2021-01-27 大盘风控取消买单 002100.SZA
2021-01-27 大盘风控取消买单 002797.SZA
2021-01-27 大盘风控取消卖单 600163.SHA
2021-01-27 大盘风控取消卖单 600292.SHA
2021-01-27 大盘风控取消卖单 600292.SHA
2021-01-27 大盘风控取消卖单 688557.SHA
2021-01-27 大盘风控取消卖单 688557.SHA
2021-01-27 大盘风控取消卖单 600835.SHA
2021-01-27 大盘风控取消卖单 600835.SHA
2021-01-27 大盘风控取消卖单 002221.SZA
2021-01-27 大盘风控取消买单 002274.SZA
2021-01-27 大盘风控取消买单 603408.SHA
2021-01-27 大盘风控取消买单 600624.SHA
2021-01-27 大盘风控取消买单 605169.SHA
2021-01-27 大盘风控取消买单 600128.SHA
2021-01-27 =======风控卖出所有的股票: {'300708.SZA': -410500.0, '002100.SZA': -76700.0, '002797.SZA': -747400.0, '600163.SHA': 988700.0, '600292.SHA': 375400.0, '688557.SHA': 268500.0, '600835.SHA': 86600.0, '002221.SZA': 213400.0}
触发大盘风控,每日处理函数直接返回!
2021-01-28 =======卖出的股票: ['002797.SZA']
2021-01-28 =======买入的股票 ['002919.SZA', '300325.SZA', '300823.SZA', '300703.SZA', '300061.SZA']
2021-01-28 买入002919.SZA 最新价=60.395344 下单量=161700
2021-01-28 买入300325.SZA 最新价=20.03712 下单量=487400
2021-01-28 买入300823.SZA 最新价=27.12691 下单量=360000
2021-01-28 买入300703.SZA 最新价=22.520224 下单量=433700
2021-01-28 买入300061.SZA 最新价=22.050161 下单量=442900
2021-01-29 大盘风控取消买单 002797.SZA
2021-01-29 大盘风控取消买单 002919.SZA
2021-01-29 大盘风控取消买单 300325.SZA
2021-01-29 大盘风控取消买单 300823.SZA
2021-01-29 大盘风控取消买单 300703.SZA
2021-01-29 大盘风控取消买单 300061.SZA
2021-01-29 =======风控卖出所有的股票: {'002797.SZA': -563960.7820365988}
触发大盘风控,每日处理函数直接返回!
2021-02-01 =======风控卖出所有的股票: {}
触发大盘风控,每日处理函数直接返回!
- 收益率-2.4%
- 年化收益率-53.44%
- 基准收益率-1.07%
- 阿尔法-0.53
- 贝塔0.12
- 夏普比率-11.39
- 胜率0.21
- 盈亏比1.2
- 收益波动率6.94%
- 信息比率-0.13
- 最大回撤2.4%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-351f97060c0040ddb7cd2893f15dcb7e"}/bigcharts-data-end