{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-150:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-108:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-119:input_1","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-112:input_1","from_node_id":"-108:data_1"},{"to_node_id":"-116:input_1","from_node_id":"-112:data_1"},{"to_node_id":"-150:training_ds","from_node_id":"-116:data_1"},{"to_node_id":"-123:input_1","from_node_id":"-119:data_1"},{"to_node_id":"-127:input_1","from_node_id":"-123:data_1"},{"to_node_id":"-150:predict_ds","from_node_id":"-127:data_1"},{"to_node_id":"-250:options_data","from_node_id":"-150:predictions"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(high, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"return_0\nmean(close_0,5)\nturn_0\ncovariance(close_0,high_0,10)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-10-28","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"30","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.5\n context.options['hold_days'] = 1\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n print (ranker_prediction)\n ranker_prediction = ranker_prediction.sort_values('pred_label', ascending=False)\n \n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-108","module_id":"BigQuantSpace.filter_stockcode.filter_stockcode-v2","parameters":[{"name":"start","value":"688","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-108"}],"output_ports":[{"name":"data_1","node_id":"-108"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-112","module_id":"BigQuantSpace.filter_stockcode.filter_stockcode-v2","parameters":[{"name":"start","value":"3","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-112"}],"output_ports":[{"name":"data_1","node_id":"-112"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-116","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-116"}],"output_ports":[{"name":"data_1","node_id":"-116"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-119","module_id":"BigQuantSpace.filter_stockcode.filter_stockcode-v2","parameters":[{"name":"start","value":"688","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-119"}],"output_ports":[{"name":"data_1","node_id":"-119"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-123","module_id":"BigQuantSpace.filter_stockcode.filter_stockcode-v2","parameters":[{"name":"start","value":"3","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-123"}],"output_ports":[{"name":"data_1","node_id":"-123"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-127","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-127"}],"output_ports":[{"name":"data_1","node_id":"-127"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-150","module_id":"BigQuantSpace.xgboost.xgboost-v1","parameters":[{"name":"num_boost_round","value":"10","type":"Literal","bound_global_parameter":null},{"name":"objective","value":"排序(pairwise)","type":"Literal","bound_global_parameter":null},{"name":"booster","value":"gbtree","type":"Literal","bound_global_parameter":null},{"name":"max_depth","value":6,"type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"group_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"nthread","value":1,"type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-150"},{"name":"features","node_id":"-150"},{"name":"model","node_id":"-150"},{"name":"predict_ds","node_id":"-150"}],"output_ports":[{"name":"output_model","node_id":"-150"},{"name":"predictions","node_id":"-150"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='209,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='68,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='537.4171142578125,-22.285789489746094,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='220,368,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='769.7521362304688,60.10979461669922,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='291.560302734375,448.4421081542969,200,200'/><node_position Node='-86' Position='822.7648315429688,409.01438903808594,200,200'/><node_position Node='-215' Position='379,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='784.015869140625,212.62083435058594,200,200'/><node_position Node='-238' Position='796.99951171875,322.4725646972656,200,200'/><node_position Node='-250' Position='679.0946655273438,951.136962890625,200,200'/><node_position Node='-108' Position='332.56134033203125,531.7916870117188,200,200'/><node_position Node='-112' Position='370.73638916015625,608.8355102539062,200,200'/><node_position Node='-116' Position='414.11688232421875,690.3909912109375,200,200'/><node_position Node='-119' Position='843.1899108886719,502.99981689453125,200,200'/><node_position Node='-123' Position='843.1900024414062,580.0436401367188,200,200'/><node_position Node='-127' Position='850.1307983398438,659.8638916015625,200,200'/><node_position Node='-150' Position='620.6085205078125,816.3682861328125,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-10-29 09:09:51.096074] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-29 09:09:51.117117] INFO: moduleinvoker: 命中缓存
[2021-10-29 09:09:51.120043] INFO: moduleinvoker: instruments.v2 运行完成[0.023945s].
[2021-10-29 09:09:51.132455] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-10-29 09:09:51.138408] INFO: moduleinvoker: 命中缓存
[2021-10-29 09:09:51.141101] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.008638s].
[2021-10-29 09:09:51.145989] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-10-29 09:09:51.191387] INFO: moduleinvoker: input_features.v1 运行完成[0.045387s].
[2021-10-29 09:09:51.202281] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-10-29 09:09:53.599494] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2021-10-29 09:09:56.517901] INFO: 基础特征抽取: 年份 2016, 特征行数=641546
[2021-10-29 09:09:59.670246] INFO: 基础特征抽取: 年份 2017, 特征行数=743233
[2021-10-29 09:10:03.199261] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2021-10-29 09:10:06.910945] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2021-10-29 09:10:07.024730] INFO: 基础特征抽取: 总行数: 3656331
[2021-10-29 09:10:07.034983] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[15.832685s].
[2021-10-29 09:10:07.043661] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-29 09:10:16.152957] INFO: derived_feature_extractor: 提取完成 mean(close_0,5), 2.915s
[2021-10-29 09:10:35.377664] INFO: derived_feature_extractor: 提取完成 covariance(close_0,high_0,10), 19.223s
[2021-10-29 09:10:36.263182] INFO: derived_feature_extractor: /y_2015, 569698
[2021-10-29 09:10:37.277766] INFO: derived_feature_extractor: /y_2016, 641546
[2021-10-29 09:10:38.463183] INFO: derived_feature_extractor: /y_2017, 743233
[2021-10-29 09:10:39.811599] INFO: derived_feature_extractor: /y_2018, 816987
[2021-10-29 09:10:41.255317] INFO: derived_feature_extractor: /y_2019, 884867
[2021-10-29 09:10:41.626712] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[34.583043s].
[2021-10-29 09:10:41.635313] INFO: moduleinvoker: join.v3 开始运行..
[2021-10-29 09:10:49.304704] INFO: join: /y_2015, 行数=560441/569698, 耗时=2.234827s
[2021-10-29 09:10:51.579029] INFO: join: /y_2016, 行数=637482/641546, 耗时=2.269472s
[2021-10-29 09:10:54.069498] INFO: join: /y_2017, 行数=738271/743233, 耗时=2.485697s
[2021-10-29 09:10:56.954553] INFO: join: /y_2018, 行数=813531/816987, 耗时=2.879636s
[2021-10-29 09:11:00.129877] INFO: join: /y_2019, 行数=873854/884867, 耗时=3.169554s
[2021-10-29 09:11:00.196247] INFO: join: 最终行数: 3623579
[2021-10-29 09:11:00.216637] INFO: moduleinvoker: join.v3 运行完成[18.581299s].
[2021-10-29 09:11:00.228076] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-10-29 09:11:00.794840] INFO: dropnan: /y_2015, 537574/560441
[2021-10-29 09:11:01.353918] INFO: dropnan: /y_2016, 637319/637482
[2021-10-29 09:11:01.977518] INFO: dropnan: /y_2017, 737424/738271
[2021-10-29 09:11:02.674363] INFO: dropnan: /y_2018, 813186/813531
[2021-10-29 09:11:03.559958] INFO: dropnan: /y_2019, 872757/873854
[2021-10-29 09:11:03.621739] INFO: dropnan: 行数: 3598260/3623579
[2021-10-29 09:11:03.632662] INFO: moduleinvoker: dropnan.v1 运行完成[3.404573s].
[2021-10-29 09:11:03.644668] INFO: moduleinvoker: filter_stockcode.v2 开始运行..
[2021-10-29 09:11:08.234379] INFO: moduleinvoker: filter_stockcode.v2 运行完成[4.589695s].
[2021-10-29 09:11:08.247234] INFO: moduleinvoker: filter_stockcode.v2 开始运行..
[2021-10-29 09:11:11.866012] INFO: moduleinvoker: filter_stockcode.v2 运行完成[3.618789s].
[2021-10-29 09:11:11.879995] INFO: moduleinvoker: filtet_st_stock.v7 开始运行..
[2021-10-29 09:11:19.474160] INFO: moduleinvoker: filtet_st_stock.v7 运行完成[7.594158s].
[2021-10-29 09:11:19.479578] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-29 09:11:19.488465] INFO: moduleinvoker: 命中缓存
[2021-10-29 09:11:19.489891] INFO: moduleinvoker: instruments.v2 运行完成[0.010317s].
[2021-10-29 09:11:19.509404] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-10-29 09:11:21.312238] INFO: 基础特征抽取: 年份 2019, 特征行数=81997
[2021-10-29 09:11:24.963543] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2021-10-29 09:11:28.781322] INFO: 基础特征抽取: 年份 2021, 特征行数=849445
[2021-10-29 09:11:28.859705] INFO: 基础特征抽取: 总行数: 1877403
[2021-10-29 09:11:28.865982] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[9.356626s].
[2021-10-29 09:11:28.873819] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-29 09:11:33.393860] INFO: derived_feature_extractor: 提取完成 mean(close_0,5), 1.320s
[2021-10-29 09:11:52.700267] INFO: derived_feature_extractor: 提取完成 covariance(close_0,high_0,10), 19.305s
[2021-10-29 09:11:52.925994] INFO: derived_feature_extractor: /y_2019, 81997
[2021-10-29 09:11:54.233846] INFO: derived_feature_extractor: /y_2020, 945961
[2021-10-29 09:11:55.598527] INFO: derived_feature_extractor: /y_2021, 849445
[2021-10-29 09:11:55.894939] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[27.0211s].
[2021-10-29 09:11:55.902926] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-10-29 09:11:56.051128] INFO: dropnan: /y_2019, 48304/81997
[2021-10-29 09:11:56.654061] INFO: dropnan: /y_2020, 942367/945961
[2021-10-29 09:11:57.153471] INFO: dropnan: /y_2021, 845804/849445
[2021-10-29 09:11:57.255601] INFO: dropnan: 行数: 1836475/1877403
[2021-10-29 09:11:57.265186] INFO: moduleinvoker: dropnan.v1 运行完成[1.362255s].
[2021-10-29 09:11:57.275587] INFO: moduleinvoker: filter_stockcode.v2 开始运行..
[2021-10-29 09:11:59.027991] INFO: moduleinvoker: filter_stockcode.v2 运行完成[1.752434s].
[2021-10-29 09:11:59.036830] INFO: moduleinvoker: filter_stockcode.v2 开始运行..
[2021-10-29 09:12:00.367210] INFO: moduleinvoker: filter_stockcode.v2 运行完成[1.330382s].
[2021-10-29 09:12:00.379104] INFO: moduleinvoker: filtet_st_stock.v7 开始运行..
[2021-10-29 09:12:03.096044] INFO: moduleinvoker: filtet_st_stock.v7 运行完成[2.716941s].
[2021-10-29 09:12:03.115003] INFO: moduleinvoker: xgboost.v1 开始运行..
[2021-10-29 09:13:19.666946] INFO: moduleinvoker: xgboost.v1 运行完成[76.551943s].
[2021-10-29 09:13:19.745031] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-10-29 09:13:19.750277] INFO: backtest: biglearning backtest:V8.5.0
[2021-10-29 09:13:19.751595] INFO: backtest: product_type:stock by specified
[2021-10-29 09:13:19.846013] INFO: moduleinvoker: cached.v2 开始运行..
[2021-10-29 09:13:19.855595] INFO: moduleinvoker: 命中缓存
[2021-10-29 09:13:19.857732] INFO: moduleinvoker: cached.v2 运行完成[0.011739s].
[2021-10-29 09:13:22.352064] INFO: algo: TradingAlgorithm V1.8.5
[2021-10-29 09:13:23.367552] INFO: algo: trading transform...
[2021-10-29 09:13:23.720791] ERROR: moduleinvoker: module name: backtest, module version: v8, trackeback: KeyError: 'pred_label'
[2021-10-29 09:13:23.725892] ERROR: moduleinvoker: module name: trade, module version: v4, trackeback: KeyError: 'pred_label'
prediction date instrument
40727 0.857901 2020-01-02 000018.SZA
648523 0.839375 2020-01-02 603178.SHA
727008 0.777343 2020-01-02 603880.SHA
733776 0.777343 2020-01-02 603920.SHA
692883 0.772815 2020-01-02 603608.SHA
... ... ... ...
585386 0.200890 2020-01-02 601158.SHA
596838 0.189988 2020-01-02 601398.SHA
620208 0.164190 2020-01-02 601988.SHA
592221 0.157198 2020-01-02 601288.SHA
611487 0.141882 2020-01-02 601857.SHA
[2751 rows x 3 columns]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-13-0a6fdd3b6566> in <module>
209 )
210
--> 211 m19 = M.trade.v4(
212 instruments=m9.data,
213 options_data=m21.predictions,
<ipython-input-13-0a6fdd3b6566> in m19_handle_data_bigquant_run(context, data)
25 context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
26 print (ranker_prediction)
---> 27 ranker_prediction = ranker_prediction.sort_values('pred_label', ascending=False)
28
29 # 1. 资金分配
KeyError: 'pred_label'