复制链接
克隆策略
In [23]:
m5.data.read()
Out[23]:
factor date instrument close_5 close_10
0 0.927688 2017-10-09 000001.SZA 1200.226196 1195.973877
1 0.001124 2017-10-09 000002.SZA 1174.712158 1183.216797
2 0.122135 2017-10-09 000004.SZA 1161.955078 1200.226196
3 0.157621 2017-10-09 000005.SZA 1156.639648 1218.298706
4 0.314311 2017-10-09 000008.SZA 1181.090698 1216.172607
... ... ... ... ... ...
1891225 0.947389 2019-12-31 688368.SHA 45.750000 53.200001
1891226 0.261570 2019-12-31 688369.SHA 46.900002 47.740002
1891227 0.915393 2019-12-31 688388.SHA 46.480000 48.439999
1891228 0.512856 2019-12-31 688389.SHA 46.709999 46.279999
1891229 0.886210 2019-12-31 688399.SHA 45.599998 44.869999

1891230 rows × 5 columns

    {"description":"实验创建于2022/7/29","graph":{"edges":[{"to_node_id":"-124:instruments","from_node_id":"-111:data"},{"to_node_id":"-871:instruments","from_node_id":"-111:data"},{"to_node_id":"-124:features","from_node_id":"-119:data"},{"to_node_id":"-554:features","from_node_id":"-119:data"},{"to_node_id":"-554:input_data","from_node_id":"-124:data"},{"to_node_id":"-563:input_1","from_node_id":"-554:data"},{"to_node_id":"-860:input_ds","from_node_id":"-563:data"},{"to_node_id":"-871:options_data","from_node_id":"-860:sorted_data"}],"nodes":[{"node_id":"-111","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-111"}],"output_ports":[{"name":"data","node_id":"-111"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-119","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nfactor = arctan(close_5-close_10)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-119"}],"output_ports":[{"name":"data","node_id":"-119"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-124","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-124"},{"name":"features","node_id":"-124"}],"output_ports":[{"name":"data","node_id":"-124"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-554","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-554"},{"name":"features","node_id":"-554"}],"output_ports":[{"name":"data","node_id":"-554"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-563","module_id":"BigQuantSpace.standardlize.standardlize-v10","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"factor","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-563"},{"name":"input_2","node_id":"-563"}],"output_ports":[{"name":"data","node_id":"-563"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-860","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"factor","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-860"},{"name":"sort_by_ds","node_id":"-860"}],"output_ports":[{"name":"sorted_data","node_id":"-860"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-871","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-871"},{"name":"options_data","node_id":"-871"},{"name":"history_ds","node_id":"-871"},{"name":"benchmark_ds","node_id":"-871"},{"name":"trading_calendar","node_id":"-871"}],"output_ports":[{"name":"raw_perf","node_id":"-871"}],"cacheable":false,"seq_num":7,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-111' Position='144,150,200,200'/><node_position Node='-119' Position='516,153,200,200'/><node_position Node='-124' Position='310,282,200,200'/><node_position Node='-554' Position='389,403,200,200'/><node_position Node='-563' Position='397,507,200,200'/><node_position Node='-860' Position='356.34417724609375,603.7003860473633,200,200'/><node_position Node='-871' Position='245.74954223632812,713.4581909179688,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [24]:
    # 本代码由可视化策略环境自动生成 2022年7月29日 19:06
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m7_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.hold_days = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m7_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.hold_days
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m7_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m7_before_trading_start_bigquant_run(context, data):
        pass
    
    
    m1 = M.instruments.v2(
        start_date='2018-01-01',
        end_date='2020-01-01',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.input_features.v1(
        features="""
    # #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    factor = arctan(close_5-close_10)
    """
    )
    
    m3 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m2.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m4 = M.derived_feature_extractor.v3(
        input_data=m3.data,
        features=m2.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m5 = M.standardlize.v10(
        input_1=m4.data,
        standard_func='ZScoreNorm',
        columns_input='factor'
    )
    
    m6 = M.sort.v5(
        input_ds=m5.data,
        sort_by='factor',
        group_by='date',
        keep_columns='--',
        ascending=False
    )
    
    m7 = M.trade.v4(
        instruments=m1.data,
        options_data=m6.sorted_data,
        start_date='',
        end_date='',
        initialize=m7_initialize_bigquant_run,
        handle_data=m7_handle_data_bigquant_run,
        prepare=m7_prepare_bigquant_run,
        before_trading_start=m7_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.HIX'
    )
    
    • 收益率-12.26%
    • 年化收益率-6.55%
    • 基准收益率1.63%
    • 阿尔法-0.06
    • 贝塔0.83
    • 夏普比率-0.24
    • 胜率0.48
    • 盈亏比1.02
    • 收益波动率26.42%
    • 信息比率-0.02
    • 最大回撤38.64%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-b9204cc1c8c54e06890a3135ef6583dc"}/bigcharts-data-end