{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-09-29","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"40","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"20","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.5","type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":"10230","type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":"1","type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":"1","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-09-29","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='639,561,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='1037,751,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-10-03 17:08:38.586712] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-10-03 17:08:38.688000] INFO: moduleinvoker: instruments.v2 运行完成[0.101273s].
[2022-10-03 17:08:38.699015] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-10-03 17:08:40.384836] INFO: 自动标注(股票): 加载历史数据: 777550 行
[2022-10-03 17:08:40.386461] INFO: 自动标注(股票): 开始标注 ..
[2022-10-03 17:08:41.274239] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[2.57522s].
[2022-10-03 17:08:41.279252] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-10-03 17:08:41.286695] INFO: moduleinvoker: 命中缓存
[2022-10-03 17:08:41.288158] INFO: moduleinvoker: input_features.v1 运行完成[0.008911s].
[2022-10-03 17:08:41.302850] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-10-03 17:08:43.317845] INFO: 基础特征抽取: 年份 2021, 特征行数=203009
[2022-10-03 17:08:47.689401] INFO: 基础特征抽取: 年份 2022, 特征行数=866566
[2022-10-03 17:08:47.768685] INFO: 基础特征抽取: 总行数: 1069575
[2022-10-03 17:08:47.778734] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[6.475871s].
[2022-10-03 17:08:47.786632] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-10-03 17:08:49.693256] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.005s
[2022-10-03 17:08:49.700151] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.005s
[2022-10-03 17:08:49.704707] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.003s
[2022-10-03 17:08:49.708987] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.003s
[2022-10-03 17:08:49.713177] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2022-10-03 17:08:49.763363] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.049s
[2022-10-03 17:08:50.417279] INFO: derived_feature_extractor: /y_2021, 203009
[2022-10-03 17:08:51.874280] INFO: derived_feature_extractor: /y_2022, 866566
[2022-10-03 17:08:52.540421] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[4.753774s].
[2022-10-03 17:08:52.550009] INFO: moduleinvoker: join.v3 开始运行..
[2022-10-03 17:08:54.529910] INFO: join: /y_2021, 行数=0/203009, 耗时=0.612005s
[2022-10-03 17:08:57.031888] INFO: join: /y_2022, 行数=750884/866566, 耗时=2.499688s
[2022-10-03 17:08:57.105009] INFO: join: 最终行数: 750884
[2022-10-03 17:08:57.118567] INFO: moduleinvoker: join.v3 运行完成[4.56856s].
[2022-10-03 17:08:57.127541] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-10-03 17:08:57.390895] INFO: dropnan: /y_2021, 0/0
[2022-10-03 17:08:59.319743] INFO: dropnan: /y_2022, 744185/750884
[2022-10-03 17:08:59.368832] INFO: dropnan: 行数: 744185/750884
[2022-10-03 17:08:59.378383] INFO: moduleinvoker: dropnan.v1 运行完成[2.250839s].
[2022-10-03 17:08:59.389063] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-10-03 17:09:01.117073] INFO: StockRanker: 特征预处理 ..
[2022-10-03 17:09:02.312115] INFO: StockRanker: prepare data: training ..
[2022-10-03 17:09:04.098708] INFO: StockRanker: sort ..
[2022-10-03 17:09:13.762335] INFO: StockRanker训练: 04421888 准备训练: 744185 行数
[2022-10-03 17:09:13.764096] INFO: StockRanker训练: AI模型训练,将在744185*13=967.44万数据上对模型训练进行20轮迭代训练。预计将需要4~8分钟。请耐心等待。
[2022-10-03 17:09:14.224111] INFO: StockRanker训练: 正在训练 ..
[2022-10-03 17:09:14.278107] INFO: StockRanker训练: 任务状态: Pending
[2022-10-03 17:09:24.326657] INFO: StockRanker训练: 任务状态: Running
[2022-10-03 17:10:34.642513] INFO: StockRanker训练: 00:01:15.9989115, finished iteration 1
[2022-10-03 17:10:54.732141] INFO: StockRanker训练: 00:01:31.3203814, finished iteration 2
[2022-10-03 17:11:04.779383] INFO: StockRanker训练: 00:01:47.1490417, finished iteration 3
[2022-10-03 17:11:24.877903] INFO: StockRanker训练: 00:02:03.7152680, finished iteration 4
[2022-10-03 17:11:45.050308] INFO: StockRanker训练: 00:02:20.5585476, finished iteration 5
[2022-10-03 17:12:05.160662] INFO: StockRanker训练: 00:02:38.2901778, finished iteration 6
[2022-10-03 17:12:15.222548] INFO: StockRanker训练: 00:02:56.8459804, finished iteration 7
[2022-10-03 17:12:35.634780] INFO: StockRanker训练: 00:03:16.7201742, finished iteration 8
[2022-10-03 17:12:55.993527] INFO: StockRanker训练: 00:03:36.5299506, finished iteration 9
[2022-10-03 17:13:16.159873] INFO: StockRanker训练: 00:03:57.6063698, finished iteration 10
[2022-10-03 17:13:36.388665] INFO: StockRanker训练: 00:04:18.1554887, finished iteration 11
[2022-10-03 17:13:56.520396] INFO: StockRanker训练: 00:04:38.6518266, finished iteration 12
[2022-10-03 17:14:16.607222] INFO: StockRanker训练: 00:04:58.3913253, finished iteration 13
[2022-10-03 17:14:36.712854] INFO: StockRanker训练: 00:05:18.9186776, finished iteration 14
[2022-10-03 17:15:06.862505] INFO: StockRanker训练: 00:05:39.7474438, finished iteration 15
[2022-10-03 17:15:26.972074] INFO: StockRanker训练: 00:06:00.5175774, finished iteration 16
[2022-10-03 17:15:47.062522] INFO: StockRanker训练: 00:06:21.3709292, finished iteration 17
[2022-10-03 17:16:07.145155] INFO: StockRanker训练: 00:06:41.3412060, finished iteration 18
[2022-10-03 17:16:27.239146] INFO: StockRanker训练: 00:07:02.2973981, finished iteration 19
[2022-10-03 17:16:47.351602] INFO: StockRanker训练: 00:07:23.0998272, finished iteration 20
[2022-10-03 17:16:47.353649] INFO: StockRanker训练: 任务状态: Succeeded
[2022-10-03 17:16:47.575284] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[468.186195s].
[2022-10-03 17:16:47.580938] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-10-03 17:16:47.592453] INFO: moduleinvoker: 命中缓存
[2022-10-03 17:16:47.593978] INFO: moduleinvoker: instruments.v2 运行完成[0.013044s].
[2022-10-03 17:16:47.610494] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-10-03 17:16:49.997589] INFO: 基础特征抽取: 年份 2021, 特征行数=279539
[2022-10-03 17:16:54.044535] INFO: 基础特征抽取: 年份 2022, 特征行数=866566
[2022-10-03 17:16:54.120332] INFO: 基础特征抽取: 总行数: 1146105
[2022-10-03 17:16:54.129468] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[6.518979s].
[2022-10-03 17:16:54.136583] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-10-03 17:16:56.266021] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.007s
[2022-10-03 17:16:56.271503] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.004s
[2022-10-03 17:16:56.275502] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.002s
[2022-10-03 17:16:56.279334] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.002s
[2022-10-03 17:16:56.283540] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2022-10-03 17:16:56.287338] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.002s
[2022-10-03 17:16:57.069322] INFO: derived_feature_extractor: /y_2021, 279539
[2022-10-03 17:16:58.524713] INFO: derived_feature_extractor: /y_2022, 866566
[2022-10-03 17:16:59.243400] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[5.106805s].
[2022-10-03 17:16:59.251750] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-10-03 17:17:00.213891] INFO: dropnan: /y_2021, 275571/279539
[2022-10-03 17:17:02.310525] INFO: dropnan: /y_2022, 858721/866566
[2022-10-03 17:17:02.383068] INFO: dropnan: 行数: 1134292/1146105
[2022-10-03 17:17:02.394637] INFO: moduleinvoker: dropnan.v1 运行完成[3.142877s].
[2022-10-03 17:17:02.408840] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-10-03 17:17:05.997195] INFO: StockRanker预测: /y_2021 ..
[2022-10-03 17:17:10.882109] INFO: StockRanker预测: /y_2022 ..
[2022-10-03 17:17:17.671745] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[15.262893s].
[2022-10-03 17:17:20.804379] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-10-03 17:17:20.810931] INFO: backtest: biglearning backtest:V8.6.3
[2022-10-03 17:17:20.812445] INFO: backtest: product_type:stock by specified
[2022-10-03 17:17:20.972460] INFO: moduleinvoker: cached.v2 开始运行..
[2022-10-03 17:17:34.865594] INFO: backtest: 读取股票行情完成:2136095
[2022-10-03 17:17:36.455875] INFO: moduleinvoker: cached.v2 运行完成[15.483425s].
[2022-10-03 17:17:46.099943] INFO: backtest: algo history_data=DataSource(d5e9d3b37e344b04925a22d2ce10128cT)
[2022-10-03 17:17:46.102118] INFO: algo: TradingAlgorithm V1.8.8
[2022-10-03 17:17:48.390171] INFO: algo: trading transform...
[2022-10-03 17:17:50.876255] WARNING: Performance: maybe_close_position no price for asset:Equity(4175 [600145.SHA]), field:price, dt:2022-04-28 15:00:00+00:00
[2022-10-03 17:17:50.883126] INFO: algo: handle_splits get splits [dt:2022-04-29 00:00:00+00:00] [asset:Equity(5288 [603881.SHA]), ratio:0.9986699819564819]
[2022-10-03 17:17:50.884916] INFO: Position: position stock handle split[sid:5288, orig_amount:1700, new_amount:1702.0, orig_cost:22.80999775283833, new_cost:22.7797, ratio:0.9986699819564819, last_sale_price:22.52999496459961]
[2022-10-03 17:17:50.886409] INFO: Position: after split: PositionStock(asset:Equity(5288 [603881.SHA]), amount:1702.0, cost_basis:22.7797, last_sale_price:22.559999465942383)
[2022-10-03 17:17:50.887849] INFO: Position: returning cash: 5.9489
[2022-10-03 17:17:50.969854] INFO: algo: handle_splits get splits [dt:2022-05-06 00:00:00+00:00] [asset:Equity(3414 [300940.SZA]), ratio:0.6222909092903137]
[2022-10-03 17:17:50.971431] INFO: Position: position stock handle split[sid:3414, orig_amount:3000, new_amount:4820.0, orig_cost:34.77000078798695, new_cost:21.6371, ratio:0.6222909092903137, last_sale_price:22.109994888305664]
[2022-10-03 17:17:50.972694] INFO: Position: after split: PositionStock(asset:Equity(3414 [300940.SZA]), amount:4820.0, cost_basis:21.6371, last_sale_price:35.529998779296875)
[2022-10-03 17:17:50.973774] INFO: Position: returning cash: 19.8192
[2022-10-03 17:17:51.434156] INFO: algo: handle_splits get splits [dt:2022-05-26 00:00:00+00:00] [asset:Equity(1568 [600971.SHA]), ratio:0.936708927154541]
[2022-10-03 17:17:51.435726] INFO: Position: position stock handle split[sid:1568, orig_amount:10900, new_amount:11636.0, orig_cost:7.930000392206813, new_cost:7.4281, ratio:0.936708927154541, last_sale_price:7.400000095367432]
[2022-10-03 17:17:51.436957] INFO: Position: after split: PositionStock(asset:Equity(1568 [600971.SHA]), amount:11636.0, cost_basis:7.4281, last_sale_price:7.899999618530273)
[2022-10-03 17:17:51.438013] INFO: Position: returning cash: 3.5939
[2022-10-03 17:17:51.933167] WARNING: Performance: maybe_close_position no price for asset:Equity(5340 [600890.SHA]), field:price, dt:2022-06-21 15:00:00+00:00
[2022-10-03 17:17:52.011514] WARNING: Performance: maybe_close_position no price for asset:Equity(5496 [002147.SZA]), field:price, dt:2022-06-23 15:00:00+00:00
[2022-10-03 17:17:52.077217] WARNING: Performance: maybe_close_position no price for asset:Equity(1471 [000502.SZA]), field:price, dt:2022-06-27 15:00:00+00:00
[2022-10-03 17:17:52.108510] WARNING: Performance: maybe_close_position no price for asset:Equity(3641 [300325.SZA]), field:price, dt:2022-06-28 15:00:00+00:00
[2022-10-03 17:17:52.328102] WARNING: Performance: maybe_close_position no price for asset:Equity(2727 [600385.SHA]), field:price, dt:2022-07-07 15:00:00+00:00
[2022-10-03 17:17:52.680106] WARNING: Performance: maybe_close_position no price for asset:Equity(3103 [600896.SHA]), field:price, dt:2022-07-25 15:00:00+00:00
[2022-10-03 17:17:54.168953] INFO: Performance: Simulated 181 trading days out of 181.
[2022-10-03 17:17:54.170680] INFO: Performance: first open: 2022-01-04 09:30:00+00:00
[2022-10-03 17:17:54.172017] INFO: Performance: last close: 2022-09-29 15:00:00+00:00
[2022-10-03 17:17:57.055317] INFO: moduleinvoker: backtest.v8 运行完成[36.250939s].
[2022-10-03 17:17:57.057092] INFO: moduleinvoker: trade.v4 运行完成[39.376263s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-82a2d0ecedb84a10872c1708742d7180"}/bigcharts-data-end
- 收益率262.74%
- 年化收益率501.31%
- 基准收益率-22.53%
- 阿尔法6.87
- 贝塔0.71
- 夏普比率6.31
- 胜率0.61
- 盈亏比2.16
- 收益波动率28.71%
- 信息比率0.54
- 最大回撤8.09%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-423ea1abd588407aac406df42f7f710e"}/bigcharts-data-end