{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-6007:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-132:features_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6001:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6013:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-137:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-7549:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-6001:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-6013:input_1","from_node_id":"-129:data"},{"to_node_id":"-168:inputs","from_node_id":"-160:data"},{"to_node_id":"-682:inputs","from_node_id":"-160:data"},{"to_node_id":"-224:inputs","from_node_id":"-168:data"},{"to_node_id":"-231:inputs","from_node_id":"-196:data"},{"to_node_id":"-196:inputs","from_node_id":"-224:data"},{"to_node_id":"-238:inputs","from_node_id":"-231:data"},{"to_node_id":"-682:outputs","from_node_id":"-238:data"},{"to_node_id":"-1098:input_model","from_node_id":"-682:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-1098:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-8872:predictions","from_node_id":"-1540:data"},{"to_node_id":"-9539:predictions","from_node_id":"-1540:data"},{"to_node_id":"-7549:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-1098:training_data","from_node_id":"-243:data"},{"to_node_id":"-1540:input_data","from_node_id":"-251:data"},{"to_node_id":"-106:features","from_node_id":"-132:data"},{"to_node_id":"-122:features","from_node_id":"-132:data"},{"to_node_id":"-113:features","from_node_id":"-132:data"},{"to_node_id":"-129:features","from_node_id":"-132:data"},{"to_node_id":"-251:input_data","from_node_id":"-1500:data"},{"to_node_id":"-2431:input_2","from_node_id":"-1500:data"},{"to_node_id":"-243:input_data","from_node_id":"-137:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-6001:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-6007:data"},{"to_node_id":"-1500:input_data","from_node_id":"-6013:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,20)\nclose_0/open_0\nopen_0/mean(close_0,5)\nopen_0/mean(close_0,10)\nopen_0/mean(close_0,20)\nreturn_5\nreturn_10\navg_amount_0/avg_amount_5\nrank_avg_amount_0/rank_avg_amount_5\nrank_return_0\nrank_return_5\nrank_return_0/rank_return_5\npe_ttm_0\n\n\n\n\n\n\n\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2020-11-19","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"15","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-168","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"256","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-168"}],"output_ports":[{"name":"data","node_id":"-168"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"128","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":false,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-682","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-682"},{"name":"outputs","node_id":"-682"}],"output_ports":[{"name":"data","node_id":"-682"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"1","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-132","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nclose_0\nhigh_1\nopen_0\nlow_0\nst_status_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-132"}],"output_ports":[{"name":"data","node_id":"-132"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-1500","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"st_status_0==0 and low_0>high_1+0.02 and close_0>open_0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1500"}],"output_ports":[{"name":"data","node_id":"-1500"},{"name":"left_data","node_id":"-1500"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-137","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"st_status_0==0 and low_0>high_1 and close_0>open_0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-137"}],"output_ports":[{"name":"data","node_id":"-137"},{"name":"left_data","node_id":"-137"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-6001","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-6001"},{"name":"input_2","node_id":"-6001"}],"output_ports":[{"name":"data","node_id":"-6001"}],"cacheable":true,"seq_num":31,"comment":"","comment_collapsed":true},{"node_id":"-6007","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-6007"},{"name":"input_2","node_id":"-6007"}],"output_ports":[{"name":"data","node_id":"-6007"}],"cacheable":true,"seq_num":33,"comment":"","comment_collapsed":true},{"node_id":"-6013","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-6013"},{"name":"input_2","node_id":"-6013"}],"output_ports":[{"name":"data","node_id":"-6013"}],"cacheable":true,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-7549","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.hold_days = 5","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n # 所拥有的仓位情况\n positions = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n \n #------------------------------------------止赢模块START--------------------------------------------\n date = data.current_dt.strftime('%Y-%m-%d')\n positions_1 = {e.symbol: p.cost_basis for e, p in context.portfolio.positions.items()}\n # 新建当日止赢股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n current_stopwin_stock = [] \n if len(positions_1) > 0:\n for i in positions.keys():\n stock_cost = positions_1[i] \n stock_market_price = data.current(context.symbol(i), 'price') \n # 赚3元就止赢\n if stock_market_price - stock_cost >= 5: \n context.order_target_percent(context.symbol(i),0)\n cash_for_sell -= stock_hold_now[i]\n current_stopwin_stock.append(i)\n print('日期:',date,'股票:',i,'出现止盈状况')\n #-------------------------------------------止赢模块END---------------------------------------------\n \n #------------------------------------------止损模块START--------------------------------------------\n \n # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n current_stoploss_stock = [] \n if len(positions) > 0:\n for i in positions.keys():\n stock_market_price = data.current(context.symbol(i), 'price') # 最新市场价格\n last_sale_date = positions[i].last_sale_date # 上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n # 建仓以来的最高价\n highest_price_since_buy = data.history(context.symbol(i), 'high', hold_days, '1d').max()\n # 确定止损位置\n stoploss_line = highest_price_since_buy - highest_price_since_buy * 0.25\n record('止损位置', stoploss_line)\n # 如果价格下穿止损位置\n if stock_market_price < stoploss_line:\n context.order_target_percent(context.symbol(i),0)\n cash_for_sell -= stock_hold_now[i]\n current_stoploss_stock.append(i)\n print('日期:', date , '股票:', i, '出现止损状况')\n #-------------------------------------------止损模块END--------------------------------------------------\n\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n stock_to_sell = []\n stock_to_sell = current_stopwin_stock + current_stoploss_stock\n if not is_staging and cash_for_sell > 0:\n if len(positions) > 0:\n for instrument in positions.keys():\n last_sale_date = positions[instrument].last_sale_date #上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days #持仓天数\n # 股票实行t+1制度,必须使持仓天数大于0\n if hold_days > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument1 in instruments:\n context.order_target(context.symbol(instrument1), 0)\n cash_for_sell -= positions_1[instrument1]\n if cash_for_sell <= 0:\n break \n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n \n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - stock_hold_now.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - stock_hold_now.get(instrument, 0)\n if cash > 0:\n # 获取今天和过去两天的成交量\n volume_since_buy = data.history(context.symbol(instrument), 'volume', 3, '1d')\n close_price = data.current(context.symbol(instrument), 'close') #当收盘价\n high_price = data.current(context.symbol(instrument), 'high') #当天最高价\n # 冲高回落的股票不能买\n if ((volume_since_buy[2]/volume_since_buy[1] < 2.5) or (high_price/close_price<1.05)) and volume_since_buy[2]/volume_since_buy[0] > 1:\n current_price = data.current(context.symbol(instrument), 'price')\n amount = math.floor(cash / current_price - cash / current_price % 100)\n context.order(context.symbol(instrument), amount)\n return","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-7549"},{"name":"options_data","node_id":"-7549"},{"name":"history_ds","node_id":"-7549"},{"name":"benchmark_ds","node_id":"-7549"},{"name":"trading_calendar","node_id":"-7549"}],"output_ports":[{"name":"raw_perf","node_id":"-7549"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-8872","module_id":"BigQuantSpace.metrics_regression.metrics_regression-v1","parameters":[{"name":"explained_variance_score","value":"True","type":"Literal","bound_global_parameter":null},{"name":"mean_absolute_error","value":"True","type":"Literal","bound_global_parameter":null},{"name":"mean_squared_error","value":"True","type":"Literal","bound_global_parameter":null},{"name":"mean_squared_log_error","value":"True","type":"Literal","bound_global_parameter":null},{"name":"median_absolute_error","value":"True","type":"Literal","bound_global_parameter":null},{"name":"r2_score","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"predictions","node_id":"-8872"}],"output_ports":[{"name":"report","node_id":"-8872"}],"cacheable":false,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-9539","module_id":"BigQuantSpace.metrics_classification.metrics_classification-v1","parameters":[],"input_ports":[{"name":"predictions","node_id":"-9539"}],"output_ports":[{"name":"data","node_id":"-9539"}],"cacheable":true,"seq_num":29,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='175,78,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='144,143,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='507,8,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='236,382,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='847,53,200,200'/><node_position Node='-106' Position='508,176,200,200'/><node_position Node='-113' Position='510,250,200,200'/><node_position Node='-122' Position='854,153,200,200'/><node_position Node='-129' Position='859,241,200,200'/><node_position Node='-160' Position='-205,35,200,200'/><node_position Node='-168' Position='-203,108,200,200'/><node_position Node='-196' Position='-201,265,200,200'/><node_position Node='-224' Position='-203,192,200,200'/><node_position Node='-231' Position='-202,338,200,200'/><node_position Node='-238' Position='-200,411,200,200'/><node_position Node='-682' Position='-200,483,200,200'/><node_position Node='-1098' Position='-199,554,200,200'/><node_position Node='-1540' Position='-196,625,200,200'/><node_position Node='-2431' Position='-194,708.7952270507812,200,200'/><node_position Node='-243' Position='224,518,200,200'/><node_position Node='-251' Position='837,462,200,200'/><node_position Node='-132' Position='526,90,200,200'/><node_position Node='-1500' Position='860,386,200,200'/><node_position Node='-137' Position='226,448,200,200'/><node_position Node='-6001' Position='507,315,200,200'/><node_position Node='-6007' Position='141,212,200,200'/><node_position Node='-6013' Position='855,324,200,200'/><node_position Node='-7549' Position='220,691,200,200'/><node_position Node='-8872' Position='-321.22710037231445,830.1255798339844,200,200'/><node_position Node='-9539' Position='16.298416137695312,835.1818237304688,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-03 14:16:43.091526] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-03 14:16:43.098728] INFO: moduleinvoker: 命中缓存
[2021-12-03 14:16:43.100942] INFO: moduleinvoker: instruments.v2 运行完成[0.00943s].
[2021-12-03 14:16:43.111476] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-03 14:16:43.122382] INFO: moduleinvoker: 命中缓存
[2021-12-03 14:16:43.124115] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.012654s].
[2021-12-03 14:16:43.129867] INFO: moduleinvoker: standardlize.v9 开始运行..
[2021-12-03 14:16:43.140164] INFO: moduleinvoker: 命中缓存
[2021-12-03 14:16:43.141863] INFO: moduleinvoker: standardlize.v9 运行完成[0.011988s].
[2021-12-03 14:16:43.146928] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-03 14:16:43.219309] INFO: moduleinvoker: input_features.v1 运行完成[0.072384s].
[2021-12-03 14:16:43.224433] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-03 14:16:43.291332] INFO: moduleinvoker: input_features.v1 运行完成[0.066896s].
[2021-12-03 14:16:43.305586] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-03 14:16:43.312586] INFO: moduleinvoker: 命中缓存
[2021-12-03 14:16:43.314569] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.008983s].
[2021-12-03 14:16:43.323851] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-03 14:16:46.677596] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.006s
[2021-12-03 14:16:48.013341] INFO: derived_feature_extractor: 提取完成 close_0/mean(close_0,10), 1.334s
[2021-12-03 14:16:49.164235] INFO: derived_feature_extractor: 提取完成 close_0/mean(close_0,20), 1.149s
[2021-12-03 14:16:50.307257] INFO: derived_feature_extractor: 提取完成 close_0/mean(close_0,5), 1.142s
[2021-12-03 14:16:50.311917] INFO: derived_feature_extractor: 提取完成 close_0/open_0, 0.003s
[2021-12-03 14:16:51.469910] INFO: derived_feature_extractor: 提取完成 open_0/mean(close_0,10), 1.157s
[2021-12-03 14:16:52.758599] INFO: derived_feature_extractor: 提取完成 open_0/mean(close_0,20), 1.287s
[2021-12-03 14:16:54.112639] INFO: derived_feature_extractor: 提取完成 open_0/mean(close_0,5), 1.352s
[2021-12-03 14:16:54.117460] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.003s
[2021-12-03 14:16:54.121568] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2021-12-03 14:16:56.220830] INFO: derived_feature_extractor: /y_2018, 816987
[2021-12-03 14:16:58.576409] INFO: derived_feature_extractor: /y_2019, 884867
[2021-12-03 14:16:59.666853] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[16.342991s].
[2021-12-03 14:16:59.673242] INFO: moduleinvoker: standardlize.v9 开始运行..
[2021-12-03 14:17:36.470256] INFO: moduleinvoker: standardlize.v9 运行完成[36.796984s].
[2021-12-03 14:17:36.484588] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-03 14:17:45.770664] INFO: join: /data, 行数=1606689/1630286, 耗时=6.753425s
[2021-12-03 14:17:45.900224] INFO: join: 最终行数: 1606689
[2021-12-03 14:17:45.916390] INFO: moduleinvoker: join.v3 运行完成[9.431813s].
[2021-12-03 14:17:45.926188] INFO: moduleinvoker: filter.v3 开始运行..
[2021-12-03 14:17:45.956686] INFO: filter: 使用表达式 st_status_0==0 and low_0>high_1 and close_0>open_0 过滤
[2021-12-03 14:17:47.738095] INFO: filter: 过滤 /data, 20388/0/1606689
[2021-12-03 14:17:47.790664] INFO: moduleinvoker: filter.v3 运行完成[1.864456s].
[2021-12-03 14:17:47.811376] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-12-03 14:17:47.984962] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.173596s].
[2021-12-03 14:17:47.993184] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-03 14:17:48.004288] INFO: moduleinvoker: 命中缓存
[2021-12-03 14:17:48.006025] INFO: moduleinvoker: instruments.v2 运行完成[0.012846s].
[2021-12-03 14:17:48.053213] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-03 14:17:48.065417] INFO: moduleinvoker: 命中缓存
[2021-12-03 14:17:48.067329] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.014134s].
[2021-12-03 14:17:48.076850] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-03 14:17:49.528268] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.003s
[2021-12-03 14:17:50.147986] INFO: derived_feature_extractor: 提取完成 close_0/mean(close_0,10), 0.618s
[2021-12-03 14:17:50.768533] INFO: derived_feature_extractor: 提取完成 close_0/mean(close_0,20), 0.619s
[2021-12-03 14:17:51.387959] INFO: derived_feature_extractor: 提取完成 close_0/mean(close_0,5), 0.618s
[2021-12-03 14:17:51.391453] INFO: derived_feature_extractor: 提取完成 close_0/open_0, 0.002s
[2021-12-03 14:17:51.988205] INFO: derived_feature_extractor: 提取完成 open_0/mean(close_0,10), 0.596s
[2021-12-03 14:17:52.588315] INFO: derived_feature_extractor: 提取完成 open_0/mean(close_0,20), 0.598s
[2021-12-03 14:17:53.230244] INFO: derived_feature_extractor: 提取完成 open_0/mean(close_0,5), 0.640s
[2021-12-03 14:17:53.234446] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.003s
[2021-12-03 14:17:53.238734] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.002s
[2021-12-03 14:17:54.757610] INFO: derived_feature_extractor: /y_2020, 823415
[2021-12-03 14:17:55.617222] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[7.540354s].
[2021-12-03 14:17:55.624043] INFO: moduleinvoker: standardlize.v9 开始运行..
[2021-12-03 14:18:12.413748] INFO: moduleinvoker: standardlize.v9 运行完成[16.789691s].
[2021-12-03 14:18:12.423774] INFO: moduleinvoker: filter.v3 开始运行..
[2021-12-03 14:18:12.436382] INFO: filter: 使用表达式 st_status_0==0 and low_0>high_1+0.02 and close_0>open_0 过滤
[2021-12-03 14:18:13.140651] INFO: filter: 过滤 /data, 10056/0/745884
[2021-12-03 14:18:13.180948] INFO: moduleinvoker: filter.v3 运行完成[0.757137s].
[2021-12-03 14:18:13.206355] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-12-03 14:18:13.327681] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.121323s].
[2021-12-03 14:18:13.337156] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.001502s].
[2021-12-03 14:18:13.355486] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.010752s].
[2021-12-03 14:18:13.376000] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.004513s].
[2021-12-03 14:18:13.397279] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.013619s].
[2021-12-03 14:18:13.408664] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.003768s].
[2021-12-03 14:18:13.430238] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.010672s].
[2021-12-03 14:18:13.466759] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-03 14:18:13.482405] INFO: moduleinvoker: 命中缓存
[2021-12-03 14:18:13.484902] INFO: moduleinvoker: cached.v3 运行完成[0.018159s].
[2021-12-03 14:18:13.487941] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.051689s].
[2021-12-03 14:18:13.493603] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2021-12-03 14:18:14.022188] INFO: dl_model_train: 准备训练,训练样本个数:20388,迭代次数:1
[2021-12-03 14:18:14.993129] INFO: dl_model_train: 训练结束,耗时:0.97s
[2021-12-03 14:18:15.034779] INFO: moduleinvoker: dl_model_train.v1 运行完成[1.541161s].
[2021-12-03 14:18:15.040766] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2021-12-03 14:18:15.285735] INFO: moduleinvoker: dl_model_predict.v1 运行完成[0.244959s].
[2021-12-03 14:18:15.306927] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-03 14:18:15.496241] INFO: moduleinvoker: cached.v3 运行完成[0.189335s].
[2021-12-03 14:18:15.586648] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-12-03 14:18:15.594256] INFO: backtest: biglearning backtest:V8.6.0
[2021-12-03 14:18:15.596155] INFO: backtest: product_type:stock by specified
[2021-12-03 14:18:15.681923] INFO: moduleinvoker: cached.v2 开始运行..
[2021-12-03 14:18:15.697753] INFO: moduleinvoker: 命中缓存
[2021-12-03 14:18:15.700149] INFO: moduleinvoker: cached.v2 运行完成[0.018251s].
[2021-12-03 14:18:17.169359] INFO: algo: TradingAlgorithm V1.8.5
[2021-12-03 14:18:17.646912] INFO: algo: trading transform...
[2021-12-03 14:18:24.659579] INFO: Performance: Simulated 213 trading days out of 213.
[2021-12-03 14:18:24.661592] INFO: Performance: first open: 2020-01-02 09:30:00+00:00
[2021-12-03 14:18:24.663089] INFO: Performance: last close: 2020-11-19 15:00:00+00:00
[2021-12-03 14:18:29.116560] INFO: moduleinvoker: backtest.v8 运行完成[13.529982s].
[2021-12-03 14:18:29.119277] INFO: moduleinvoker: trade.v4 运行完成[13.614852s].
[2021-12-03 14:18:29.160071] ERROR: moduleinvoker: module name: metrics_regression, module version: v1, trackeback: tables.exceptions.HDF5ExtError: HDF5 error back trace
File "H5F.c", line 509, in H5Fopen
unable to open file
File "H5Fint.c", line 1400, in H5F__open
unable to open file
File "H5Fint.c", line 1700, in H5F_open
unable to read superblock
File "H5Fsuper.c", line 411, in H5F__super_read
file signature not found
End of HDF5 error back trace
Unable to open/create file '/var/app/data/bigquant/datasource/user/v3/b/64/b6440073d2b44d97bedfe1664c7a05f6T'
20/20 - 1s - loss: 1.7187 - mse: 1.7187
10/10 - 0s
DataSource(b6440073d2b44d97bedfe1664c7a05f6T)
日期: 2020-02-17 股票: 600596.SHA 出现止盈状况
日期: 2020-02-21 股票: 300065.SZA 出现止盈状况
日期: 2020-03-18 股票: 000975.SZA 出现止损状况
日期: 2020-04-07 股票: 002020.SZA 出现止盈状况
日期: 2020-04-09 股票: 000713.SZA 出现止盈状况
日期: 2020-04-16 股票: 603603.SHA 出现止损状况
日期: 2020-05-14 股票: 300498.SZA 出现止损状况
日期: 2020-05-21 股票: 600895.SHA 出现止盈状况
日期: 2020-06-04 股票: 300691.SZA 出现止盈状况
日期: 2020-06-12 股票: 002186.SZA 出现止盈状况
日期: 2020-07-02 股票: 601636.SHA 出现止盈状况
日期: 2020-07-03 股票: 600036.SHA 出现止盈状况
日期: 2020-07-09 股票: 600258.SHA 出现止盈状况
日期: 2020-07-09 股票: 300773.SZA 出现止盈状况
日期: 2020-07-13 股票: 300001.SZA 出现止盈状况
日期: 2020-07-14 股票: 300707.SZA 出现止盈状况
日期: 2020-07-14 股票: 002851.SZA 出现止盈状况
日期: 2020-07-20 股票: 600370.SHA 出现止盈状况
日期: 2020-07-20 股票: 000157.SZA 出现止盈状况
日期: 2020-10-14 股票: 601606.SHA 出现止损状况
日期: 2020-10-16 股票: 000001.SZA 出现止盈状况
日期: 2020-10-26 股票: 600277.SHA 出现止损状况
日期: 2020-10-30 股票: 603115.SHA 出现止损状况
- 收益率5.28%
- 年化收益率6.27%
- 基准收益率20.3%
- 阿尔法-0.09
- 贝塔0.72
- 夏普比率0.25
- 胜率0.69
- 盈亏比0.58
- 收益波动率25.1%
- 信息比率-0.05
- 最大回撤16.37%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-d61538a53a3e4d6eb28f482ae34d7c7c"}/bigcharts-data-end
---------------------------------------------------------------------------
HDF5ExtError Traceback (most recent call last)
<ipython-input-8-8320c1f43a20> in <module>
465 )
466
--> 467 m25 = M.metrics_regression.v1(
468 predictions=m11.data,
469 explained_variance_score=True,
HDF5ExtError: HDF5 error back trace
File "H5F.c", line 509, in H5Fopen
unable to open file
File "H5Fint.c", line 1400, in H5F__open
unable to open file
File "H5Fint.c", line 1700, in H5F_open
unable to read superblock
File "H5Fsuper.c", line 411, in H5F__super_read
file signature not found
End of HDF5 error back trace
Unable to open/create file '/var/app/data/bigquant/datasource/user/v3/b/64/b6440073d2b44d97bedfe1664c7a05f6T'