{"description":"实验创建于2021/11/24","graph":{"edges":[{"to_node_id":"-1298:input_1","from_node_id":"-1242:data"},{"to_node_id":"-1250:input_data","from_node_id":"-1298:data_1"}],"nodes":[{"node_id":"-1242","module_id":"BigQuantSpace.datahub_load_file.datahub_load_file-v2","parameters":[{"name":"file_path","value":"# Python 动态生成文件路径\ndef bigquant_run():\n # 示例代码如下。在这里编写您的代码\n # 如果不需要动态生成路径,直接返回path即可\n # import datetime\n # import os\n # base_path = \"/var/app/data/datahub\"\n # data_path = os.path.join(base_path, \"bigcrawler\")\n # date = datetime.datetime.now().strftime(\"%Y%m%d\")\n # file_path = os.path.join(data_path, \"{}.csv\".format(date))\n # return file_path \n file_path = './data.csv'\n\n return file_path\n","type":"Literal","bound_global_parameter":null},{"name":"file_type","value":"csv","type":"Literal","bound_global_parameter":null},{"name":"csv_delimiter","value":",","type":"Literal","bound_global_parameter":null},{"name":"other_parameters","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"h5_data_key","value":"data","type":"Literal","bound_global_parameter":null}],"input_ports":[],"output_ports":[{"name":"data","node_id":"-1242"}],"cacheable":false,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-1250","module_id":"BigQuantSpace.datahub_update_datasource.datahub_update_datasource-v5","parameters":[{"name":"alias","value":"my_data","type":"Literal","bound_global_parameter":null},{"name":"primary_key","value":"# #号开始的表示注释,注释需单独一行\n# 主键字段, 每个字段为一行\n# 主键字段主要用于数据去重\ndate\ninstrument\n","type":"Literal","bound_global_parameter":null},{"name":"date_field","value":"date","type":"Literal","bound_global_parameter":null},{"name":"partition_date","value":"无","type":"Literal","bound_global_parameter":null},{"name":"rewrite","value":"False","type":"Literal","bound_global_parameter":null},{"name":"public","value":"True","type":"Literal","bound_global_parameter":null},{"name":"friendly_name","value":"我的数据","type":"Literal","bound_global_parameter":null},{"name":"desc","value":"期货数据","type":"Literal","bound_global_parameter":null},{"name":"only_desc_fields","value":"False","type":"Literal","bound_global_parameter":null},{"name":"fields","value":"\n# #号开始的表示注释,注释需单独一行\n# 对您数据中的每个字段进行描述,系统会根据您定义的数据类型自动将对应列的数据转换\n# 如果是已有数据表,默认会获取已有表的所有数据字段信息\n# eg: {'date': {'desc': '描述', 'type': '数据类型'}, ...}\n# {'instrument': {'desc': '证券代码', 'type': 'str'}, ... }\n{}\n","type":"Literal","bound_global_parameter":null},{"name":"show_doc","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1250"}],"output_ports":[{"name":"data","node_id":"-1250"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-1298","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read()\n df.drop(columns='Unnamed: 0',inplace=True)\n df['date'] = df['date'].astype('datetime64')\n data_1 = DataSource.write_df(df)\n \n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"data_1","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-1298"},{"name":"input_2","node_id":"-1298"},{"name":"input_3","node_id":"-1298"}],"output_ports":[{"name":"data_1","node_id":"-1298"},{"name":"data_2","node_id":"-1298"},{"name":"data_3","node_id":"-1298"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-1242' Position='181,366,200,200'/><node_position Node='-1250' Position='167,533,200,200'/><node_position Node='-1298' Position='183,450,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-15 20:56:24.352963] INFO: 读取数据(文件): 读取数据文件: ./data.csv
[2021-12-15 20:56:24.429718] INFO: moduleinvoker: datahub_load_file.v2 运行完成[0.169342s].
[2021-12-15 20:56:24.452804] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-15 20:56:24.604543] INFO: moduleinvoker: cached.v3 运行完成[0.151777s].
[2021-12-15 20:56:24.666336] WARNING: 更新入库: 您选择了覆盖原数据,这将会把数据库中 my_data 的旧数据覆盖,请谨慎操作!(系统将在提示3次后执行您的操作)
[2021-12-15 20:56:27.669915] WARNING: 更新入库: 您选择了覆盖原数据,这将会把数据库中 my_data 的旧数据覆盖,请谨慎操作!(系统将在提示3次后执行您的操作)
[2021-12-15 20:56:30.674911] WARNING: 更新入库: 您选择了覆盖原数据,这将会把数据库中 my_data 的旧数据覆盖,请谨慎操作!(系统将在提示3次后执行您的操作)
[2021-12-15 20:56:33.859351] INFO: 更新入库: 正在写入数据,请稍后...
[2021-12-15 20:56:33.863994] INFO: bigdatasource: start remote_update my_data ...
[2021-12-15 20:56:34.604643] INFO: bigdatasource: remote update success!
[2021-12-15 20:56:34.607137] INFO: 更新入库: 数据更新完成, 可以使用 DataSource('my_data').read() 来查看数据!
[2021-12-15 20:56:34.609755] INFO: moduleinvoker: datahub_update_datasource.v5 运行完成[9.978093s].
读取数据(文件) 数据统计 (前 96 行) </font></font>
|
Unnamed: 0 |
close |
date |
high |
instrument |
low |
open |
open_intl |
settle |
volume |
amount |
product_code |
low_limit |
high_limit |
count(Nan) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
type |
int64 |
float64 |
object |
float64 |
object |
float64 |
float64 |
float64 |
float64 |
float64 |
float64 |
object |
float64 |
float64 |
读取数据(文件) 数据预览 (前 5 行) </font></font>
|
Unnamed: 0 |
close |
date |
high |
instrument |
low |
open |
open_intl |
settle |
volume |
amount |
product_code |
low_limit |
high_limit |
0 |
0 |
7318.0 |
2021-05-06 |
7396.0 |
SF8888.CZC |
7212.0 |
7242.0 |
5614.0 |
7306.0 |
1227.0 |
4439.76 |
SF |
6698.0 |
7866.0 |
1 |
1 |
7368.0 |
2021-05-07 |
7560.0 |
SF8888.CZC |
7152.0 |
7152.0 |
4864.0 |
7390.0 |
1223.0 |
4519.21 |
SF |
6866.0 |
7746.0 |
2 |
2 |
7584.0 |
2021-05-10 |
7584.0 |
SF8888.CZC |
7430.0 |
7520.0 |
3863.0 |
7520.0 |
1434.0 |
5357.54 |
SF |
6946.0 |
7834.0 |
3 |
3 |
7430.0 |
2021-05-11 |
7500.0 |
SF8888.CZC |
7268.0 |
7268.0 |
3457.0 |
7334.0 |
430.0 |
1590.50 |
SF |
7068.0 |
7972.0 |
4 |
4 |
7776.0 |
2021-05-12 |
7776.0 |
SF8888.CZC |
7360.0 |
7360.0 |
3426.0 |
7538.0 |
241.0 |
908.37 |
SF |
6892.0 |
7776.0 |
更新入库 数据统计 (前 96 行) </font></font>
|
close |
date |
high |
instrument |
low |
open |
open_intl |
settle |
volume |
amount |
product_code |
low_limit |
high_limit |
count(Nan) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
type |
float64 |
datetime64[ns] |
float64 |
object |
float64 |
float64 |
float64 |
float64 |
float64 |
float64 |
object |
float64 |
float64 |
更新入库 数据预览 (前 5 行) </font></font>
|
close |
date |
high |
instrument |
low |
open |
open_intl |
settle |
volume |
amount |
product_code |
low_limit |
high_limit |
0 |
7318.0 |
2021-05-06 |
7396.0 |
SF8888.CZC |
7212.0 |
7242.0 |
5614.0 |
7306.0 |
1227.0 |
4439.76 |
SF |
6698.0 |
7866.0 |
1 |
7368.0 |
2021-05-07 |
7560.0 |
SF8888.CZC |
7152.0 |
7152.0 |
4864.0 |
7390.0 |
1223.0 |
4519.21 |
SF |
6866.0 |
7746.0 |
2 |
7584.0 |
2021-05-10 |
7584.0 |
SF8888.CZC |
7430.0 |
7520.0 |
3863.0 |
7520.0 |
1434.0 |
5357.54 |
SF |
6946.0 |
7834.0 |
3 |
7430.0 |
2021-05-11 |
7500.0 |
SF8888.CZC |
7268.0 |
7268.0 |
3457.0 |
7334.0 |
430.0 |
1590.50 |
SF |
7068.0 |
7972.0 |
4 |
7776.0 |
2021-05-12 |
7776.0 |
SF8888.CZC |
7360.0 |
7360.0 |
3426.0 |
7538.0 |
241.0 |
908.37 |
SF |
6892.0 |
7776.0 |