复制链接
克隆策略
In [22]:
# #m7.data.read_df().columns
# #m17.predictions.read_df()
# #m8.predictions.read_df().head(100)
# #m8.predictions.read_df().tail(100)
# #m2.data_2.read_df()
# #m23.data_1.read_df()
# #m23.data_2.read_df()
# # df = m11.data_1.read()['data']
# # print(df[df['date']=='2021-01-26'])
# # print(df[df['date']=='2021-01-27'])

# # 计算n日涨幅
# def zhangfu(data, timeperiod=13):          
#     adj_close = data['close']- data['close'].shift(timeperiod)             
#     return adj_close

# # 计算动量
# def barAdjMon(data, timeperiod=2):          
#     adj_close = (data['close'] + data['high'] + data['low']) / 3               
#     return np.log(adj_close / adj_close.shift(timeperiod))

# def del_main(start_date_input,end_date_input):
#     instruments = ['510330.HOF','161017.ZOF','159949.ZOF']
#     df = DataSource("bar1d_CN_FUND").read(start_date=start_date_input,instruments = instruments, end_date=end_date_input)
#     groups = df.groupby(df['instrument'])
#     df_expend = pd.DataFrame()
#     for x in instruments:
#         tp = groups.get_group(x)
#         tp = tp.sort_values(by=['date'],na_position='first')
#         tp['pre_close'] = tp['close'].shift(1)
#         print(tp.head(2))
#         df_expend = df_expend.append(tp)
#     #df_159949 = groups.get_group('159949.ZOF')
#     df_expend.sort_values(['date'],na_position='first',inplace=True)
#     df_expend = df_expend.reset_index()
#     df_expend.drop('index',axis= 1,inplace = True)
    
#     #计算其他特征
#     df_expend['mom_20'] = barAdjMon(df_expend,timeperiod=20)
#     df_expend['mom_20'] = df_expend['mom_20'].fillna(value=0.0) #列向前填充
#     # 涨幅因子
#     df_expend['zhangfu'] = zhangfu(df_expend,timeperiod=13)
#     df_expend['zhangfu'] = df_expend['zhangfu'].fillna(value=0.0) #列向前填充
#     return df_expend

# # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
# def bigquant_run(input_1, input_2, input_3,start_date_input,end_date_input,pre_start_date,pre_end_date):
#     # 示例代码如下。在这里编写您的代码
#     # 读取数据  默认会返回全部证券代码数据, 通过指定参数 instruments 可以读取到指定的证券代码数据
#     df_expend = del_main(start_date_input,end_date_input)
#     data_1 = DataSource.write_df(df_expend)
#     data_2 = DataSource.write_df(df_expend)
#     df_pre = del_main(pre_start_date,pre_end_date)
#     data_3 = DataSource.write_df(df_pre)
#     return Outputs(data_1=data_1, data_2=data_2, data_3=data_3)
In [27]:
# m4.data.read()['start_date']
Out[27]:
'2021-06-01'

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-109:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-295:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-129:data"},{"to_node_id":"-129:input_data","from_node_id":"-147:data_1"},{"to_node_id":"-228:input_1","from_node_id":"-147:data_2"},{"to_node_id":"-228:input_2","from_node_id":"-147:data_3"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-281:input_data","from_node_id":"-228:data_1"},{"to_node_id":"-295:input_data","from_node_id":"-228:data_2"},{"to_node_id":"-1481:options_data","from_node_id":"-109:data_1"},{"to_node_id":"-109:input_2","from_node_id":"-121:data_1"},{"to_node_id":"-1481:instruments","from_node_id":"-307:data"},{"to_node_id":"-147:input_1","from_node_id":"-307:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100\nmom_20\nzhangfu","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"3","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"100","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"20","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.auto_labeler_on_datasource.auto_labeler_on_datasource-v1","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-147","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# 计算n日涨幅\ndef zhangfu(data, timeperiod=13): \n adj_close = data['close']- data['close'].shift(timeperiod) \n return adj_close\n\n# 计算动量\ndef barAdjMon(data, timeperiod=2): \n adj_close = (data['close'] + data['high'] + data['low']) / 3 \n return np.log(adj_close / adj_close.shift(timeperiod))\n\ndef del_main(start_date_input,end_date_input):\n instruments = ['510330.HOF','161017.ZOF','159949.ZOF']\n df = DataSource(\"bar1d_CN_FUND\").read(start_date=start_date_input,instruments = instruments, end_date=end_date_input)\n groups = df.groupby(df['instrument'])\n df_expend = pd.DataFrame()\n for x in instruments:\n tp = groups.get_group(x)\n tp = tp.sort_values(by=['date'],na_position='first')\n tp['pre_close'] = tp['close'].shift(1)\n print(tp.head(2))\n df_expend = df_expend.append(tp)\n #df_159949 = groups.get_group('159949.ZOF')\n df_expend.sort_values(['date'],na_position='first',inplace=True)\n df_expend = df_expend.reset_index()\n df_expend.drop('index',axis= 1,inplace = True)\n \n #计算其他特征\n df_expend['mom_20'] = barAdjMon(df_expend,timeperiod=20)\n df_expend['mom_20'] = df_expend['mom_20'].fillna(value=0.0) #列向前填充\n # 涨幅因子\n df_expend['zhangfu'] = zhangfu(df_expend,timeperiod=13)\n df_expend['zhangfu'] = df_expend['zhangfu'].fillna(value=0.0) #列向前填充\n return df_expend\n\n# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3,start_date_input,end_date_input,pre_start_date,pre_end_date):\n pre_start_date = input_1.read()['start_date']\n pre_end_date = input_1.read()['end_date']\n # 示例代码如下。在这里编写您的代码\n # 读取数据 默认会返回全部证券代码数据, 通过指定参数 instruments 可以读取到指定的证券代码数据\n df_expend = del_main(start_date_input,end_date_input)\n data_1 = DataSource.write_df(df_expend)\n data_2 = DataSource.write_df(df_expend)\n print('pre_start_date,pre_end_date',pre_start_date,pre_end_date)\n df_pre = del_main(pre_start_date,pre_end_date)\n data_3 = DataSource.write_df(df_pre)\n return Outputs(data_1=data_1, data_2=data_2, data_3=data_3)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\"start_date_input\":\"2020-06-01\",\n\"end_date_input\":\"2021-05-01\",\n\"pre_start_date\":\"2021-06-01\",\n\"pre_end_date\":\"2022-06-01\"}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-147"},{"name":"input_2","node_id":"-147"},{"name":"input_3","node_id":"-147"}],"output_ports":[{"name":"data_1","node_id":"-147"},{"name":"data_2","node_id":"-147"},{"name":"data_3","node_id":"-147"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-1481","module_id":"BigQuantSpace.hftrade.hftrade-v2","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n print('初始化函数开始:')\n print('context.options',context.options)\n # 加载预测数据\n context.ranker_prediction = context.options.get('data').read()['data']\n context.param = context.options['data'].read()[\"param\"]\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0003, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = context.param[\"stock_count\"]\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1.01\n context.hold_days = context.param[\"hold_days\"]\n print('初始化函数结束')\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 交易引擎:每个单位时间开盘前调用一次。\ndef bigquant_run(context, data):\n # 盘前处理,订阅行情等\n print('订阅行情前',data)\n context.subscribe(context.instruments)\n print('订阅行情后',data)\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:tick数据处理函数,每个tick执行一次\ndef bigquant_run(context, tick):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"import math\n# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n print('当前日期data.current_dt',data.current_dt)\n print('data',data)\n try:\n context.ranker_prediction = context.options.get('data').read()['data']\n # 相隔几天(hold_days)进行一下换仓\n if context.trading_day_index % context.hold_days != 0:\n return \n\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n # 目前持仓\n positions = {e: p.amount * p.last_sale_price for e, p in context.portfolio.positions.items()}\n # 权重\n buy_cash_weights = context.stock_weights\n # 今日买入股票列表\n stock_to_buy = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n # 持仓上限\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n print(\"<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\")\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = [equity for equity in context.portfolio.positions ]\n # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 需要卖出的股票\n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]\n\n # 卖出\n for stock in stock_to_sell:\n # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态\n # 如果返回真值,则可以正常下单,否则会出错\n # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式\n if data.can_trade(context.symbol(stock)):\n # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,\n # 即卖出全部股票,可参考回测文档\n print('卖出order target percent',context.symbol(stock))\n print('卖出结果',context.order_target_percent(context.symbol(stock), 0))\n\n # 如果当天没有买入的股票,就返回\n if len(stock_to_buy) == 0:\n return\n\n # 买入\n print('买入列表',stock_to_buy)\n for i, instrument in enumerate(stock_to_buy):\n cash = context.portfolio.portfolio_value * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 500:\n cash = int(math.floor(cash))\n print('买入order_value',context.symbol(instrument),' cash ',cash)\n print(context.order_value(context.symbol(instrument), cash))\n except Exception as e:\n print('抛出异常',e)","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, trade):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, order):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"自动","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"80","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"False","type":"Literal","bound_global_parameter":null},{"name":"replay_bdb","value":"False","type":"Literal","bound_global_parameter":null},{"name":"show_debug_info","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1481"},{"name":"options_data","node_id":"-1481"},{"name":"history_ds","node_id":"-1481"},{"name":"benchmark_ds","node_id":"-1481"}],"output_ports":[{"name":"raw_perf","node_id":"-1481"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-228","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"def del_input(input_1):\n df = input_1.read_df()\n data_1 = DataSource.write_df(df)\n return data_1\n# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n data_1 = del_input(input_1)\n data_2 = del_input(input_2)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-228"},{"name":"input_2","node_id":"-228"},{"name":"input_3","node_id":"-228"}],"output_ports":[{"name":"data_1","node_id":"-228"},{"name":"data_2","node_id":"-228"},{"name":"data_3","node_id":"-228"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-109","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n print('m11.input1',input_1)\n df = input_1.read()\n param = input_2.read()\n \n data = {\n \"param\": param,\n \"data\": df\n }\n data_1 = DataSource.write_pickle(data)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-109"},{"name":"input_2","node_id":"-109"},{"name":"input_3","node_id":"-109"}],"output_ports":[{"name":"data_1","node_id":"-109"},{"name":"data_2","node_id":"-109"},{"name":"data_3","node_id":"-109"}],"cacheable":true,"seq_num":11,"comment":"合并数据和Trade参数","comment_collapsed":true},{"node_id":"-121","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3, stock_count, hold_days):\n # 示例代码如下。在这里编写您的代码\n param = {\n \"stock_count\": stock_count,\n \"hold_days\": hold_days\n }\n data_1 = DataSource.write_pickle(param)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n \"stock_count\": 1,\n \"hold_days\": 1 \n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-121"},{"name":"input_2","node_id":"-121"},{"name":"input_3","node_id":"-121"}],"output_ports":[{"name":"data_1","node_id":"-121"},{"name":"data_2","node_id":"-121"},{"name":"data_3","node_id":"-121"}],"cacheable":true,"seq_num":14,"comment":"暴露Trade的参数","comment_collapsed":true},{"node_id":"-307","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-06-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-06-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_FUND","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"510330.HOF\n161017.ZOF\n159949.ZOF","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-307"}],"output_ports":[{"name":"data","node_id":"-307"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='1010,-281,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='558,575,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='729,717,200,200'/><node_position Node='-281' Position='369,140,200,200'/><node_position Node='-295' Position='941,147,200,200'/><node_position Node='-129' Position='-5,156,200,200'/><node_position Node='-147' Position='480,-278,200,200'/><node_position Node='-1481' Position='1025,791,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='117,385,200,200'/><node_position Node='-228' Position='701,-2,200,200'/><node_position Node='-109' Position='1269,643,200,200'/><node_position Node='-121' Position='1577,522,200,200'/><node_position Node='-307' Position='1309,-481,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [36]:
    # 本代码由可视化策略环境自动生成 2022年7月11日 23:44
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m14_run_bigquant_run(input_1, input_2, input_3, stock_count, hold_days):
        # 示例代码如下。在这里编写您的代码
        param = {
            "stock_count": stock_count,
            "hold_days": hold_days
            }
        data_1 = DataSource.write_pickle(param)
        return Outputs(data_1=data_1, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m14_post_run_bigquant_run(outputs):
        return outputs
    
    # 计算n日涨幅
    def zhangfu(data, timeperiod=13):          
        adj_close = data['close']- data['close'].shift(timeperiod)             
        return adj_close
    
    # 计算动量
    def barAdjMon(data, timeperiod=2):          
        adj_close = (data['close'] + data['high'] + data['low']) / 3               
        return np.log(adj_close / adj_close.shift(timeperiod))
    
    def del_main(start_date_input,end_date_input):
        instruments = ['510330.HOF','161017.ZOF','159949.ZOF']
        df = DataSource("bar1d_CN_FUND").read(start_date=start_date_input,instruments = instruments, end_date=end_date_input)
        groups = df.groupby(df['instrument'])
        df_expend = pd.DataFrame()
        for x in instruments:
            tp = groups.get_group(x)
            tp = tp.sort_values(by=['date'],na_position='first')
            tp['pre_close'] = tp['close'].shift(1)
            print(tp.head(2))
            df_expend = df_expend.append(tp)
        #df_159949 = groups.get_group('159949.ZOF')
        df_expend.sort_values(['date'],na_position='first',inplace=True)
        df_expend = df_expend.reset_index()
        df_expend.drop('index',axis= 1,inplace = True)
        
        #计算其他特征
        df_expend['mom_20'] = barAdjMon(df_expend,timeperiod=20)
        df_expend['mom_20'] = df_expend['mom_20'].fillna(value=0.0) #列向前填充
        # 涨幅因子
        df_expend['zhangfu'] = zhangfu(df_expend,timeperiod=13)
        df_expend['zhangfu'] = df_expend['zhangfu'].fillna(value=0.0) #列向前填充
        return df_expend
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m2_run_bigquant_run(input_1, input_2, input_3,start_date_input,end_date_input,pre_start_date,pre_end_date):
        pre_start_date = input_1.read()['start_date']
        pre_end_date = input_1.read()['end_date']
        # 示例代码如下。在这里编写您的代码
        # 读取数据  默认会返回全部证券代码数据, 通过指定参数 instruments 可以读取到指定的证券代码数据
        df_expend = del_main(start_date_input,end_date_input)
        data_1 = DataSource.write_df(df_expend)
        data_2 = DataSource.write_df(df_expend)
        print('pre_start_date,pre_end_date',pre_start_date,pre_end_date)
        df_pre = del_main(pre_start_date,pre_end_date)
        data_3 = DataSource.write_df(df_pre)
        return Outputs(data_1=data_1, data_2=data_2, data_3=data_3)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m2_post_run_bigquant_run(outputs):
        return outputs
    
    def del_input(input_1):
        df = input_1.read_df()
        data_1 = DataSource.write_df(df)
        return data_1
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m23_run_bigquant_run(input_1, input_2, input_3):
        data_1 = del_input(input_1)
        data_2 = del_input(input_2)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m23_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m11_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        print('m11.input1',input_1)
        df = input_1.read()
        param = input_2.read()
        
        data = {
            "param": param,
            "data": df
        }
        data_1 = DataSource.write_pickle(data)
        return Outputs(data_1=data_1, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m11_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m21_initialize_bigquant_run(context):
        print('初始化函数开始:')
        print('context.options',context.options)
        # 加载预测数据
        context.ranker_prediction = context.options.get('data').read()['data']
        context.param = context.options['data'].read()["param"]
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0003, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = context.param["stock_count"]
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 1.01
        context.hold_days = context.param["hold_days"]
        print('初始化函数结束')
    
    # 交易引擎:每个单位时间开盘前调用一次。
    def m21_before_trading_start_bigquant_run(context, data):
        # 盘前处理,订阅行情等
        print('订阅行情前',data)
        context.subscribe(context.instruments)
        print('订阅行情后',data)
        pass
    
    # 交易引擎:tick数据处理函数,每个tick执行一次
    def m21_handle_tick_bigquant_run(context, tick):
        pass
    
    import math
    # 回测引擎:每日数据处理函数,每天执行一次
    def m21_handle_data_bigquant_run(context, data):
        print('当前日期data.current_dt',data.current_dt)
        print('data',data)
        try:
            context.ranker_prediction = context.options.get('data').read()['data']
            # 相隔几天(hold_days)进行一下换仓
            if context.trading_day_index % context.hold_days != 0:
                return 
    
            # 按日期过滤得到今日的预测数据
            ranker_prediction = context.ranker_prediction[
                context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
            # 目前持仓
            positions = {e: p.amount * p.last_sale_price for e, p in context.portfolio.positions.items()}
            # 权重
            buy_cash_weights = context.stock_weights
            # 今日买入股票列表
            stock_to_buy = list(ranker_prediction.instrument[:len(buy_cash_weights)])
            # 持仓上限
            max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
            print("<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<")
            # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
            stock_hold_now = [equity for equity in context.portfolio.positions ]
            # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有
            no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]
            # 需要卖出的股票
            stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]
    
            # 卖出
            for stock in stock_to_sell:
                # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态
                # 如果返回真值,则可以正常下单,否则会出错
                # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式
                if data.can_trade(context.symbol(stock)):
                    # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,
                    #   即卖出全部股票,可参考回测文档
                    print('卖出order target percent',context.symbol(stock))
                    print('卖出结果',context.order_target_percent(context.symbol(stock), 0))
    
            # 如果当天没有买入的股票,就返回
            if len(stock_to_buy) == 0:
                return
    
            # 买入
            print('买入列表',stock_to_buy)
            for i, instrument in enumerate(stock_to_buy):
                cash = context.portfolio.portfolio_value * buy_cash_weights[i]
                if cash > max_cash_per_instrument - positions.get(instrument, 0):
                    # 确保股票持仓量不会超过每次股票最大的占用资金量
                    cash = max_cash_per_instrument - positions.get(instrument, 0)
                if cash > 500:
                    cash = int(math.floor(cash))
                    print('买入order_value',context.symbol(instrument),' cash ',cash)
                    print(context.order_value(context.symbol(instrument), cash))
        except Exception as e:
            print('抛出异常',e)
    # 交易引擎:成交回报处理函数,每个成交发生时执行一次
    def m21_handle_trade_bigquant_run(context, trade):
        pass
    
    # 交易引擎:委托回报处理函数,每个委托变化时执行一次
    def m21_handle_order_bigquant_run(context, order):
        pass
    
    # 交易引擎:盘后处理函数,每日盘后执行一次
    def m21_after_trading_bigquant_run(context, data):
        pass
    
    
    m3 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    
    rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100
    mom_20
    zhangfu"""
    )
    
    m14 = M.cached.v3(
        run=m14_run_bigquant_run,
        post_run=m14_post_run_bigquant_run,
        input_ports='',
        params="""{
        "stock_count": 1,
        "hold_days": 1 
    }""",
        output_ports=''
    )
    
    m4 = M.instruments.v2(
        start_date='2021-06-01',
        end_date=T.live_run_param('trading_date', '2022-06-01'),
        market='CN_FUND',
        instrument_list="""510330.HOF
    161017.ZOF
    159949.ZOF""",
        max_count=0
    )
    
    m2 = M.cached.v3(
        input_1=m4.data,
        run=m2_run_bigquant_run,
        post_run=m2_post_run_bigquant_run,
        input_ports='',
        params="""{"start_date_input":"2020-06-01",
    "end_date_input":"2021-05-01",
    "pre_start_date":"2021-06-01",
    "pre_end_date":"2022-06-01"}""",
        output_ports=''
    )
    
    m10 = M.auto_labeler_on_datasource.v1(
        input_data=m2.data_1,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        drop_na_label=True,
        cast_label_int=True,
        date_col='date',
        instrument_col='instrument',
        user_functions={}
    )
    
    m23 = M.cached.v3(
        input_1=m2.data_2,
        input_2=m2.data_3,
        run=m23_run_bigquant_run,
        post_run=m23_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports='',
        m_cached=False
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m23.data_1,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m7 = M.join.v3(
        data1=m10.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m6 = M.stock_ranker_train.v6(
        training_ds=m7.data,
        features=m3.data,
        learning_algorithm='排序',
        number_of_leaves=3,
        minimum_docs_per_leaf=100,
        number_of_trees=20,
        learning_rate=0.1,
        max_bins=1023,
        feature_fraction=1,
        data_row_fraction=1,
        plot_charts=True,
        ndcg_discount_base=1,
        m_lazy_run=False,
        m_cached=False
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m23.data_2,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m8 = M.stock_ranker_predict.v5(
        model=m6.model,
        data=m18.data,
        m_lazy_run=False
    )
    
    m11 = M.cached.v3(
        input_1=m8.predictions,
        input_2=m14.data_1,
        run=m11_run_bigquant_run,
        post_run=m11_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m21 = M.hftrade.v2(
        instruments=m4.data,
        options_data=m11.data_1,
        start_date='',
        end_date='',
        initialize=m21_initialize_bigquant_run,
        before_trading_start=m21_before_trading_start_bigquant_run,
        handle_tick=m21_handle_tick_bigquant_run,
        handle_data=m21_handle_data_bigquant_run,
        handle_trade=m21_handle_trade_bigquant_run,
        handle_order=m21_handle_order_bigquant_run,
        after_trading=m21_after_trading_bigquant_run,
        capital_base=1000000,
        frequency='daily',
        price_type='真实价格',
        product_type='自动',
        before_start_days='80',
        order_price_field_buy='open',
        order_price_field_sell='close',
        benchmark='000300.HIX',
        plot_charts=True,
        disable_cache=False,
        replay_bdb=False,
        show_debug_info=True,
        backtest_only=False
    )
    
       instrument       date    open   high     low   close       volume  \
    2  510330.HOF 2020-06-01  4.5108  4.615  4.5108  4.6080  205954831.0   
    5  510330.HOF 2020-06-02  4.6080  4.630  4.5965  4.6196  107216737.0   
    
            amount  adjust_factor  turn  pre_close  
    2  813650964.0       1.157789   NaN        NaN  
    5  426967604.0       1.157794   NaN      4.608  
       instrument       date    open    high     low   close     volume  \
    1  161017.ZOF 2020-06-01  2.2009  2.2567  2.2009  2.2554  3000479.0   
    4  161017.ZOF 2020-06-02  2.2567  2.2728  2.2468  2.2554  1403088.0   
    
            amount  adjust_factor  turn  pre_close  
    1  5441987.193        1.23855   NaN        NaN  
    4  2554776.191        1.23855   NaN     2.2554  
       instrument       date   open   high    low  close       volume  \
    0  159949.ZOF 2020-06-01  0.793  0.818  0.793  0.816  754511227.0   
    3  159949.ZOF 2020-06-02  0.818  0.818  0.805  0.811  645798345.0   
    
             amount  adjust_factor  turn  pre_close  
    0  6.093608e+08            1.0   NaN        NaN  
    3  5.231684e+08            1.0   NaN      0.816  
    pre_start_date,pre_end_date 2021-06-01 2022-06-01
       instrument       date    open    high     low   close       volume  \
    0  510330.HOF 2021-06-01  6.2829  6.3006  6.2099  6.2935  149795700.0   
    3  510330.HOF 2021-06-02  6.3006  6.3100  6.2123  6.2452  119155700.0   
    
            amount  adjust_factor  turn  pre_close  
    0  796794080.0       1.177676   NaN        NaN  
    3  633040575.0       1.177673   NaN     6.2935  
       instrument       date    open    high     low   close    volume  \
    2  161017.ZOF 2021-06-01  2.9106  2.9354  2.8859  2.9218  465328.0   
    5  161017.ZOF 2021-06-02  2.9218  2.9230  2.8945  2.9044  510014.0   
    
            amount  adjust_factor  turn  pre_close  
    2  1093198.557       1.238576   NaN        NaN  
    5  1198952.227       1.238550   NaN     2.9218  
       instrument       date   open   high    low  close       volume  \
    1  159949.ZOF 2021-06-01  1.435  1.442  1.411  1.439  643360309.0   
    4  159949.ZOF 2021-06-02  1.441  1.445  1.403  1.408  744331379.0   
    
             amount  adjust_factor  turn  pre_close  
    1  9.204310e+08            1.0   NaN        NaN  
    4  1.056368e+09            1.0   NaN      1.439