{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-50:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-57:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-50:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-102:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-57:input_data","from_node_id":"-50:data"},{"to_node_id":"-102:options_data","from_node_id":"-57:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nopenA = open_0/adjust_factor_0\ncloseA = close_0/adjust_factor_0\nbuy_condition=where((openA > 60.99)&(openA < 61.01),1,0)\nsell_condition=where((closeA >57.80)&(closeA <57.819),1,0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-12-14","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-12-20","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":2,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-50","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-50"},{"name":"features","node_id":"-50"}],"output_ports":[{"name":"data","node_id":"-50"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-57","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-57"},{"name":"features","node_id":"-57"}],"output_ports":[{"name":"data","node_id":"-57"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-102","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 获取今日的日期\n today = data.current_dt.strftime('%Y-%m-%d') \n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n print(today,stock_hold_now,'目前持仓的股票列表')\n # 记录用于买入股票的可用现金,因为是早盘卖股票,需要记录卖出的股票市值并在买入下单前更新可用现金;\n # 如果是早盘买尾盘卖,则卖出时不需更新可用现金,因为尾盘卖出股票所得现金无法使用\n cash_for_buy = context.portfolio.cash \n \n try:\n buy_stock = context.daily_stock_buy[today] # 当日符合买入条件的股票\n print(today,buy_stock,'进行买入处理')\n except:\n buy_stock=[] # 如果没有符合条件的股票,就设置为空\n \n try:\n sell_stock = context.daily_stock_sell[today] # 当日符合卖出条件的股票\n print(today,sell_stock,'进行卖出处理') \n except:\n sell_stock=[] # 如果没有符合条件的股票,就设置为空\n \n # 需要卖出的股票:已有持仓中符合卖出条件的股票\n stock_to_sell = [ i for i in stock_hold_now if i in sell_stock ]\n # 需要买入的股票:没有持仓且符合买入条件的股票\n stock_to_buy = [ i for i in buy_stock if i not in stock_hold_now ] \n # 需要调仓的股票:已有持仓且不符合卖出条件的股票\n stock_to_adjust=[ i for i in stock_hold_now if i not in sell_stock ]\n \n # 如果有卖出信号\n if len(stock_to_sell)>0:\n for instrument in stock_to_sell:\n sid = context.symbol(instrument) # 将标的转化为equity格式\n cur_position = context.portfolio.positions[sid].amount # 持仓\n if cur_position > 0 and data.can_trade(sid):\n context.order_target_percent(sid, 0) # 全部卖出 \n # 因为设置的是早盘卖出早盘买入,需要根据卖出的股票更新可用现金;如果设置尾盘卖出早盘买入,则不需更新可用现金(可以删除下面的语句)\n #cash_for_buy += stock_hold_now[instrument]\n \n \n # 如果有买入信号/有持仓\n if len(stock_to_buy)+len(stock_to_adjust)>0:\n weight = 1/(len(stock_to_buy)+len(stock_to_adjust)) # 每只股票的比重为等资金比例持有\n for instrument in stock_to_buy+stock_to_adjust:\n sid = context.symbol(instrument) # 将标的转化为equity格式\n if data.can_trade(sid):\n context.order_target_value(sid, weight*cash_for_buy) # 买入","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n df = context.options['data'].read_df()\n\n # 函数:求满足开仓条件的股票列表\n def open_pos_con(df):\n return list(df[df['buy_condition']>0].instrument)\n\n # 函数:求满足平仓条件的股票列表\n def close_pos_con(df):\n return list(df[df['sell_condition']>0].instrument)\n\n # 每日买入股票的数据框\n context.daily_stock_buy= df.groupby('date').apply(open_pos_con)\n # 每日卖出股票的数据框\n context.daily_stock_sell= df.groupby('date').apply(close_pos_con)","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"50000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-102"},{"name":"options_data","node_id":"-102"},{"name":"history_ds","node_id":"-102"},{"name":"benchmark_ds","node_id":"-102"},{"name":"trading_calendar","node_id":"-102"}],"output_ports":[{"name":"raw_perf","node_id":"-102"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='936.3544921875,105.77215576171875,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1187,12,200,200'/><node_position Node='-50' Position='1076,209,200,200'/><node_position Node='-57' Position='1079,279,200,200'/><node_position Node='-102' Position='1028.3165283203125,356.9620056152344,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-01-04 09:21:58.917204] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-01-04 09:21:58.942947] INFO: moduleinvoker: input_features.v1 运行完成[0.02574s].
[2023-01-04 09:21:58.948872] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-01-04 09:21:58.955584] INFO: moduleinvoker: 命中缓存
[2023-01-04 09:21:58.957556] INFO: moduleinvoker: instruments.v2 运行完成[0.008693s].
[2023-01-04 09:21:58.972149] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-01-04 09:21:58.979338] INFO: moduleinvoker: 命中缓存
[2023-01-04 09:21:58.981701] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.009566s].
[2023-01-04 09:21:58.991433] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-01-04 09:21:59.077287] INFO: derived_feature_extractor: 提取完成 openA = open_0/adjust_factor_0, 0.001s
[2023-01-04 09:21:59.080734] INFO: derived_feature_extractor: 提取完成 closeA = close_0/adjust_factor_0, 0.001s
[2023-01-04 09:21:59.083834] INFO: derived_feature_extractor: 提取完成 buy_condition=where((openA > 60.99)&(openA < 61.01),1,0), 0.001s
[2023-01-04 09:21:59.086960] INFO: derived_feature_extractor: 提取完成 sell_condition=where((closeA >57.80)&(closeA <57.819),1,0), 0.001s
[2023-01-04 09:21:59.169368] INFO: derived_feature_extractor: /y_2022, 25145
[2023-01-04 09:21:59.222377] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.230922s].
[2023-01-04 09:21:59.273919] INFO: moduleinvoker: backtest.v8 开始运行..
[2023-01-04 09:21:59.280100] INFO: backtest: biglearning backtest:V8.6.3
[2023-01-04 09:21:59.389041] INFO: backtest: product_type:stock by specified
[2023-01-04 09:21:59.453987] INFO: moduleinvoker: cached.v2 开始运行..
[2023-01-04 09:22:04.298631] INFO: backtest: 读取股票行情完成:1320389
[2023-01-04 09:22:05.442853] INFO: moduleinvoker: cached.v2 运行完成[5.988874s].
[2023-01-04 09:22:12.436680] INFO: backtest: algo history_data=DataSource(b1e7fc1cc64e4b468ad9688d4183031fT)
[2023-01-04 09:22:12.438430] INFO: algo: TradingAlgorithm V1.8.9
[2023-01-04 09:22:13.251221] INFO: algo: trading transform...
[2023-01-04 09:22:13.591464] INFO: Performance: Simulated 5 trading days out of 5.
[2023-01-04 09:22:13.593123] INFO: Performance: first open: 2022-12-14 09:30:00+00:00
[2023-01-04 09:22:13.594586] INFO: Performance: last close: 2022-12-20 15:00:00+00:00
[2023-01-04 09:22:15.055814] INFO: moduleinvoker: backtest.v8 运行完成[15.78189s].
[2023-01-04 09:22:15.058547] INFO: moduleinvoker: trade.v4 运行完成[15.828168s].
2022-12-14 {} 目前持仓的股票列表
2022-12-14 ['002943.SZA'] 进行买入处理
2022-12-14 [] 进行卖出处理
2022-12-15 {'002943.SZA': 49191.99840796759} 目前持仓的股票列表
2022-12-15 ['600536.SHA'] 进行买入处理
2022-12-15 [] 进行卖出处理
2022-12-16 {} 目前持仓的股票列表
2022-12-16 ['603198.SHA', '603589.SHA'] 进行买入处理
2022-12-16 [] 进行卖出处理
2022-12-19 {'603198.SHA': 18375.000003616788, '603589.SHA': 18482.99904125199} 目前持仓的股票列表
2022-12-19 ['300073.SZA', '300813.SZA'] 进行买入处理
2022-12-19 [] 进行卖出处理
2022-12-20 {} 目前持仓的股票列表
2022-12-20 ['600536.SHA', '603799.SHA'] 进行买入处理
2022-12-20 [] 进行卖出处理
- 收益率-13.13%
- 年化收益率-99.92%
- 基准收益率-2.96%
- 阿尔法-1.0
- 贝塔-0.22
- 夏普比率-16.14
- 胜率0.0
- 盈亏比0.0
- 收益波动率43.04%
- 信息比率-0.73
- 最大回撤13.13%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-8d8f5cbcba5b4009ae450c2abf008e70"}/bigcharts-data-end