{"description":"实验创建于2022/12/12","graph":{"edges":[{"to_node_id":"-1225:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-1260:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-1234:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-1225:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-190:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-1234:input_data","from_node_id":"-1225:data"},{"to_node_id":"-137:input_data","from_node_id":"-1014:data"},{"to_node_id":"-292:input_data","from_node_id":"-1234:data"},{"to_node_id":"-1014:input_data","from_node_id":"-292:data"},{"to_node_id":"-292:features","from_node_id":"-1260:data_1"},{"to_node_id":"-190:options_data","from_node_id":"-137:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"e=0.0000000001\n\n上市时间=list_days_0\n\n收益=return_10\n\n\n#特征\n市值=market_cap_0\n\n#过滤特征\n换手rank_std20=rank(std(turn_0,20))\n换手rank_std5=rank(std(turn_0,5))\n\n\n#罗伯瑞克选股指标\n市净率=pb_lf_0\n市盈率=pe_ttm_0\n借款比例=fs_total_liability_0/(fs_current_assets_0+fs_fixed_assets_0)\n现金流比率=close_0/fs_free_cash_flow_0\n\n\n\n\n\n\n\n\n\n\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2013-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2017-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-1225","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"50","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1225"},{"name":"features","node_id":"-1225"}],"output_ports":[{"name":"data","node_id":"-1225"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1014","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1014"}],"output_ports":[{"name":"data","node_id":"-1014"},{"name":"left_data","node_id":"-1014"}],"cacheable":false,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-1234","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"def talib_SLOPE(df, close, timeperiod=21):\n return talib.LINEARREG_SLOPE(close, timeperiod)\n\nbigquant_run = {\n'ta_slope':talib_SLOPE\n}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1234"},{"name":"features","node_id":"-1234"}],"output_ports":[{"name":"data","node_id":"-1234"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-292","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-292"},{"name":"features","node_id":"-292"}],"output_ports":[{"name":"data","node_id":"-292"}],"cacheable":false,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-1260","module_id":"BigQuantSpace.features_short.features_short-v1","parameters":[],"input_ports":[{"name":"input_1","node_id":"-1260"}],"output_ports":[{"name":"data_1","node_id":"-1260"}],"cacheable":false,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-137","module_id":"BigQuantSpace.datahub_handler_column.datahub_handler_column-v1","parameters":[{"name":"handler","value":"# Python 代码处理数据\ndef bigquant_run(data):\n \n df_tmp = data\n data=data[data['上市时间'] >365]\n data=data[data['换手rank_std20'] < 0.8]\n data=data[data['换手rank_std5'] <0.8]\n \n data=pd.DataFrame(data)\n date=data.date.unique()\n df_list=[]\n\n for i in date:\n \n cut=data.loc[data['date']==i]\n \n cut=cut[cut['市净率'] < 1.5]\n \n pb_mean = cut['市盈率'].mean()\n cut=cut[cut['市盈率'] < pb_mean]\n \n cut=cut[cut['借款比例'] < 0.33]\n\n \n \n \n df_list.append(cut)\n\n df_=pd.concat(df_list)\n \n \n \n \n \n return df_","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-137"}],"output_ports":[{"name":"data","node_id":"-137"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-190","module_id":"BigQuantSpace.hftrade.hftrade-v2","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 交易引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n #=========================== 加载预测数据 ===================================\n \n context.ranker_prediction = context.options['data'].read_df()\n \n #=========================== 设置交易参数 ====================================\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.00015, sell_cost=0.0013, min_cost=5))\n #=========================== 设置持仓参数 ====================================\n \n #最大持仓量\n context.stock_count = 5\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.5\n \n #持仓天数\n context.hold_days = 5\n \n #股票止损列表\n context.stop_list = {}\n \n #股票止损卖出后最小买入间隔\n context.min_stop_days = 20\n \n #=======================================功能开关\n #是否止损\n context.stop_win = True\n context.set_stock_t1(1)","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 交易引擎:每个单位时间开盘前调用一次。\ndef bigquant_run(context, data):\n # 盘前处理,订阅行情等\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:tick数据处理函数,每个tick执行一次\ndef bigquant_run(context, tick):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 交易引擎:bar数据处理函数,每个时间单位执行一次\ndef bigquant_run(context, data):\n \n import datetime\n \n #初始化()\n buy_list = [] #买入列表\n sell_list = [] #卖出列表\n target_list = [] #目标列表\n #==================== 数据准备\n today = data.current_dt.strftime('%Y-%m-%d')\n time = data.current_dt\n \n today_data = context.ranker_prediction[context.ranker_prediction['date'] == today]\n #print(today_data)\n \n if len(today_data)>0:\n #获得当日预备持仓\n today_data = today_data.sort_values(by='市值', ascending = True)\n target_list = today_data.instrument.tolist()\n \n #获得当前持仓列表\n holding_list = list(context.get_account_positions().keys())\n holding_num = len(holding_list)\n long_num = 0 #初始化多头数\n \n if len(target_list)>0:\n pct = 1/len(target_list)\n else:\n pct=len(holding_list)\n \n\n #生成卖单\n for ins in holding_list:\n if ins not in target_list:\n context.order_target_percent(ins,0)\n sell_list.append(ins)\n \n #现有持仓的持仓量调整\n for ins in holding_list:\n if ins not in sell_list:\n context.order_target_percent(ins,pct)\n \n #生成买单\n for ins in target_list:\n if ins not in holding_list: \n context.order_target_percent(ins,pct)\n\n\n","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, trade):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, order):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":1,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"True","type":"Literal","bound_global_parameter":null},{"name":"replay_bdb","value":"False","type":"Literal","bound_global_parameter":null},{"name":"show_debug_info","value":"False","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-190"},{"name":"options_data","node_id":"-190"},{"name":"history_ds","node_id":"-190"},{"name":"benchmark_ds","node_id":"-190"}],"output_ports":[{"name":"raw_perf","node_id":"-190"}],"cacheable":false,"seq_num":2,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='52,-1099,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='-362,-1100,200,200'/><node_position Node='-1225' Position='-166,-954,200,200'/><node_position Node='-1014' Position='-137,-634,200,200'/><node_position Node='-1234' Position='-157,-843,200,200'/><node_position Node='-292' Position='-144,-752,200,200'/><node_position Node='-1260' Position='212,-955,200,200'/><node_position Node='-137' Position='-121,-539,200,200'/><node_position Node='-190' Position='-176,-408,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-04-12 20:47:26.922467] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-04-12 20:47:26.948622] INFO: moduleinvoker: input_features.v1 运行完成[0.026167s].
[2023-04-12 20:47:29.450748] INFO: moduleinvoker: features_short.v1 开始运行..
[2023-04-12 20:47:29.505180] INFO: moduleinvoker: features_short.v1 运行完成[0.054445s].
[2023-04-12 20:47:29.515500] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-04-12 20:47:29.579353] INFO: moduleinvoker: instruments.v2 运行完成[0.063857s].
[2023-04-12 20:47:29.598359] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-04-12 20:47:30.112529] INFO: 基础特征抽取: 年份 2012, 特征行数=86573
[2023-04-12 20:47:32.263768] INFO: 基础特征抽取: 年份 2013, 特征行数=564168
[2023-04-12 20:47:34.198127] INFO: 基础特征抽取: 年份 2014, 特征行数=569948
[2023-04-12 20:47:35.849774] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2023-04-12 20:47:37.819153] INFO: 基础特征抽取: 年份 2016, 特征行数=641546
[2023-04-12 20:47:38.157516] INFO: 基础特征抽取: 年份 2017, 特征行数=0
[2023-04-12 20:47:38.324856] INFO: 基础特征抽取: 总行数: 2431933
[2023-04-12 20:47:38.326704] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[8.728363s].
[2023-04-12 20:47:38.341782] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-04-12 20:47:44.101717] INFO: derived_feature_extractor: 提取完成 e=0.0000000001, 0.003s
[2023-04-12 20:47:44.105944] INFO: derived_feature_extractor: 提取完成 上市时间=list_days_0, 0.003s
[2023-04-12 20:47:44.110409] INFO: derived_feature_extractor: 提取完成 收益=return_10, 0.003s
[2023-04-12 20:47:44.117160] INFO: derived_feature_extractor: 提取完成 市值=market_cap_0, 0.005s
[2023-04-12 20:47:47.015223] INFO: derived_feature_extractor: 提取完成 换手rank_std20=rank(std(turn_0,20)), 2.897s
[2023-04-12 20:47:50.004695] INFO: derived_feature_extractor: 提取完成 换手rank_std5=rank(std(turn_0,5)), 2.987s
[2023-04-12 20:47:50.009439] INFO: derived_feature_extractor: 提取完成 市净率=pb_lf_0, 0.003s
[2023-04-12 20:47:50.014241] INFO: derived_feature_extractor: 提取完成 市盈率=pe_ttm_0, 0.003s
[2023-04-12 20:47:50.024818] INFO: derived_feature_extractor: 提取完成 借款比例=fs_total_liability_0/(fs_current_assets_0+fs_fixed_assets_0), 0.009s
[2023-04-12 20:47:50.033420] INFO: derived_feature_extractor: 提取完成 现金流比率=close_0/fs_free_cash_flow_0, 0.007s
[2023-04-12 20:47:51.635784] INFO: derived_feature_extractor: /y_2012, 86573
[2023-04-12 20:47:52.658240] INFO: derived_feature_extractor: /y_2013, 564168
[2023-04-12 20:47:53.827436] INFO: derived_feature_extractor: /y_2014, 569948
[2023-04-12 20:47:55.366294] INFO: derived_feature_extractor: /y_2015, 569698
[2023-04-12 20:47:57.026055] INFO: derived_feature_extractor: /y_2016, 641546
[2023-04-12 20:47:58.429906] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[20.088097s].
[2023-04-12 20:47:58.452043] INFO: moduleinvoker: fillnan.v1 开始运行..
[2023-04-12 20:48:04.661409] INFO: moduleinvoker: fillnan.v1 运行完成[6.209354s].
[2023-04-12 20:48:04.677714] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2023-04-12 20:48:05.824494] INFO: A股股票过滤: 过滤 /y_2012, 82102/0/86573
[2023-04-12 20:48:09.027579] INFO: A股股票过滤: 过滤 /y_2013, 534316/0/564168
[2023-04-12 20:48:12.227886] INFO: A股股票过滤: 过滤 /y_2014, 541406/0/569948
[2023-04-12 20:48:15.535630] INFO: A股股票过滤: 过滤 /y_2015, 543562/0/569698
[2023-04-12 20:48:19.329036] INFO: A股股票过滤: 过滤 /y_2016, 615743/0/641546
[2023-04-12 20:48:19.344643] INFO: A股股票过滤: 过滤完成, 2317129 + 0
[2023-04-12 20:48:19.369157] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[14.691439s].
[2023-04-12 20:48:28.637667] INFO: 数据处理(自定义): 数据处理(自定义) 完成
[2023-04-12 20:48:28.721501] INFO: 数据处理(自定义): ds: DataSource(6b406af6eff04203939344ecbd6d1907T)
[2023-04-12 20:48:28.723014] INFO: moduleinvoker: datahub_handler_column.v1 运行完成[9.341669s].
[2023-04-12 20:48:28.779470] INFO: moduleinvoker: hfbacktest.v1 开始运行..
[2023-04-12 20:48:29.172683] INFO: hfbacktest: biglearning V1.4.21
[2023-04-12 20:48:29.174153] INFO: hfbacktest: bigtrader v1.10.0 2023-04-07
数据处理(自定义) 数据统计 (前 2118 行) </font></font>
|
date |
instrument |
e |
上市时间 |
收益 |
市值 |
换手rank_std20 |
换手rank_std5 |
市净率 |
市盈率 |
借款比例 |
现金流比率 |
count(Nan) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
type |
datetime64[ns] |
object |
float64 |
float32 |
float32 |
float64 |
float64 |
float64 |
float32 |
float32 |
float64 |
float64 |
数据处理(自定义) 数据预览 (前 5 行) </font></font>
|
date |
instrument |
e |
上市时间 |
收益 |
市值 |
换手rank_std20 |
换手rank_std5 |
市净率 |
市盈率 |
借款比例 |
现金流比率 |
878 |
2012-11-12 |
000030.SZA |
1.000000e-10 |
6984.0 |
1.030809 |
2.316013e+09 |
0.0 |
0.0 |
-95297.515625 |
-922.274292 |
0.000000 |
-2.053298e-04 |
2035 |
2012-11-12 |
000096.SZA |
1.000000e-10 |
4494.0 |
0.979540 |
2.022240e+09 |
0.0 |
0.0 |
1.125427 |
24.317139 |
0.199649 |
-4.365882e-07 |
7164 |
2012-11-12 |
000635.SZA |
1.000000e-10 |
5836.0 |
0.962040 |
2.458041e+09 |
0.0 |
0.0 |
0.932666 |
-60.740070 |
0.296427 |
-1.832404e-08 |
9214 |
2012-11-12 |
000726.SZA |
1.000000e-10 |
4340.0 |
0.998392 |
6.265609e+09 |
0.0 |
0.0 |
1.218711 |
10.562615 |
0.315390 |
1.221924e-07 |
11359 |
2012-11-12 |
000821.SZA |
1.000000e-10 |
5253.0 |
0.971204 |
1.280836e+09 |
0.0 |
0.0 |
1.149406 |
-32.167004 |
0.291004 |
-3.083850e-07 |