{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-239:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-239:input_data","from_node_id":"-129:data"},{"to_node_id":"-168:inputs","from_node_id":"-160:data"},{"to_node_id":"-682:inputs","from_node_id":"-160:data"},{"to_node_id":"-224:inputs","from_node_id":"-168:data"},{"to_node_id":"-238:inputs","from_node_id":"-196:data"},{"to_node_id":"-196:inputs","from_node_id":"-224:data"},{"to_node_id":"-1098:training_data","from_node_id":"-231:data"},{"to_node_id":"-682:outputs","from_node_id":"-238:data"},{"to_node_id":"-1098:input_model","from_node_id":"-682:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-1098:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-1540:input_data","from_node_id":"-239:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"603123.SHA\n002761.SZA\n002037.SZA\n002657.SZA\n600056.SHA\n000736.SZA\n000965.SZA\n600082.SHA\n000014.SZA\n000797.SZA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\nwhere(label>0.5, NaN, label)\nwhere(label<-0.5, NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5-1\nreturn_10-1\nreturn_20-1\navg_amount_0/avg_amount_5-1\navg_amount_5/avg_amount_20-1\nrank_avg_amount_0-rank_avg_amount_5\nrank_avg_amount_5-rank_avg_amount_10\nrank_return_0-rank_return_5\nrank_return_5-rank_return_10\nbeta_csi300_30_0/10\nbeta_csi300_60_0/10\nswing_volatility_5_0/swing_volatility_30_0-1\nswing_volatility_30_0/swing_volatility_60_0-1\nta_atr_14_0/ta_atr_28_0-1\nta_sma_5_0/ta_sma_20_0-1\nta_sma_10_0/ta_sma_20_0-1\nta_sma_20_0/ta_sma_30_0-1\nta_sma_30_0/ta_sma_60_0-1\nta_rsi_14_0/100\nta_rsi_28_0/100\nta_cci_14_0/500\nta_cci_28_0/500\nbeta_industry_30_0/10\nbeta_industry_60_0/10\nta_sma(amount_0, 10)/ta_sma(amount_0, 20)-1\nta_sma(amount_0, 20)/ta_sma(amount_0, 30)-1\nta_sma(amount_0, 30)/ta_sma(amount_0, 60)-1\nta_sma(amount_0, 50)/ta_sma(amount_0, 100)-1\nta_sma(turn_0, 10)/ta_sma(turn_0, 20)-1\nta_sma(turn_0, 20)/ta_sma(turn_0, 30)-1\nta_sma(turn_0, 30)/ta_sma(turn_0, 60)-1\nta_sma(turn_0, 50)/ta_sma(turn_0, 100)-1\nhigh_0/low_0-1\nclose_0/open_0-1\nshift(close_0,1)/close_0-1\nshift(close_0,2)/close_0-1\nshift(close_0,3)/close_0-1\nshift(close_0,4)/close_0-1\nshift(close_0,5)/close_0-1\nshift(close_0,10)/close_0-1\nshift(close_0,20)/close_0-1\nta_sma(high_0-low_0, 5)/ta_sma(high_0-low_0, 20)-1\nta_sma(high_0-low_0, 10)/ta_sma(high_0-low_0, 20)-1\nta_sma(high_0-low_0, 20)/ta_sma(high_0-low_0, 30)-1\nta_sma(high_0-low_0, 30)/ta_sma(high_0-low_0, 60)-1\nta_sma(high_0-low_0, 50)/ta_sma(high_0-low_0, 100)-1\nrank_avg_amount_5\nrank_avg_turn_5\nrank_volatility_5_0\nrank_swing_volatility_5_0\nrank_avg_mf_net_amount_5\nrank_beta_industry_5_0\nrank_return_5\nrank_return_2\nstd(close_0,5)/std(close_0,20)-1\nstd(close_0,10)/std(close_0,20)-1\nstd(close_0,20)/std(close_0,30)-1\nstd(close_0,30)/std(close_0,60)-1\nstd(close_0,50)/std(close_0,100)-1\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-04-03","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"603123.SHA\n002761.SZA\n002037.SZA\n002657.SZA\n600056.SHA\n000736.SZA\n000965.SZA\n600082.SHA\n000014.SZA\n000797.SZA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"59","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-168","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"256","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-168"}],"output_ports":[{"name":"data","node_id":"-168"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"128","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.9","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-682","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-682"},{"name":"outputs","node_id":"-682"}],"output_ports":[{"name":"data","node_id":"-682"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"10240","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"2","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-239","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-239"},{"name":"features","node_id":"-239"}],"output_ports":[{"name":"data","node_id":"-239"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='208,58,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='763,3,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='-106' Position='381,188,200,200'/><node_position Node='-113' Position='385,280,200,200'/><node_position Node='-122' Position='1078,236,200,200'/><node_position Node='-129' Position='1081,327,200,200'/><node_position Node='-141' Position='823,1085,200,200'/><node_position Node='-160' Position='-283,55,200,200'/><node_position Node='-168' Position='-203,147,200,200'/><node_position Node='-196' Position='-203,311,200,200'/><node_position Node='-224' Position='-203,237,200,200'/><node_position Node='-231' Position='388,510,200,200'/><node_position Node='-238' Position='-198,469,200,200'/><node_position Node='-682' Position='-244,549,200,200'/><node_position Node='-1098' Position='-50,765,200,200'/><node_position Node='-1540' Position='245,844,200,200'/><node_position Node='-2431' Position='533,940,200,200'/><node_position Node='-239' Position='805,515,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-04-04 19:53:43.290445] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-04 19:53:43.297679] INFO: moduleinvoker: 命中缓存
[2022-04-04 19:53:43.299733] INFO: moduleinvoker: instruments.v2 运行完成[0.009293s].
[2022-04-04 19:53:43.307592] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-04-04 19:53:43.313727] INFO: moduleinvoker: 命中缓存
[2022-04-04 19:53:43.315158] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007565s].
[2022-04-04 19:53:43.319226] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-04 19:53:43.326068] INFO: moduleinvoker: 命中缓存
[2022-04-04 19:53:43.327859] INFO: moduleinvoker: input_features.v1 运行完成[0.008623s].
[2022-04-04 19:53:43.343692] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-04 19:53:43.349847] INFO: moduleinvoker: 命中缓存
[2022-04-04 19:53:43.351194] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007509s].
[2022-04-04 19:53:43.358244] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-04 19:53:43.364338] INFO: moduleinvoker: 命中缓存
[2022-04-04 19:53:43.365706] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007458s].
[2022-04-04 19:53:43.373560] INFO: moduleinvoker: join.v3 开始运行..
[2022-04-04 19:53:43.379553] INFO: moduleinvoker: 命中缓存
[2022-04-04 19:53:43.380809] INFO: moduleinvoker: join.v3 运行完成[0.007244s].
[2022-04-04 19:53:43.395073] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-04-04 19:53:43.402472] INFO: moduleinvoker: 命中缓存
[2022-04-04 19:53:43.404018] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.008986s].
[2022-04-04 19:53:43.408954] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-04 19:53:43.448458] INFO: moduleinvoker: instruments.v2 运行完成[0.039481s].
[2022-04-04 19:53:43.465195] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-04 19:53:43.549829] WARNING: bigdatasource: factor [beta_industry_30_0] will deprecated,you can replace with [beta_industry1_30_0]
[2022-04-04 19:53:43.551387] WARNING: bigdatasource: factor [beta_industry_60_0] will deprecated,you can replace with [beta_industry1_60_0]
[2022-04-04 19:53:43.552470] WARNING: bigdatasource: factor [rank_beta_industry_5_0] will deprecated,you can replace with [rank_beta_industry1_5_0]
[2022-04-04 19:53:45.068927] INFO: 基础特征抽取: 年份 2022, 特征行数=585
[2022-04-04 19:53:45.097689] INFO: 基础特征抽取: 总行数: 585
[2022-04-04 19:53:45.102983] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[1.637803s].
[2022-04-04 19:53:45.112140] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-04 19:53:45.167616] INFO: derived_feature_extractor: 提取完成 return_5-1, 0.001s
[2022-04-04 19:53:45.170814] INFO: derived_feature_extractor: 提取完成 return_10-1, 0.001s
[2022-04-04 19:53:45.173536] INFO: derived_feature_extractor: 提取完成 return_20-1, 0.001s
[2022-04-04 19:53:45.176434] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5-1, 0.001s
[2022-04-04 19:53:45.179368] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20-1, 0.001s
[2022-04-04 19:53:45.181954] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0-rank_avg_amount_5, 0.001s
[2022-04-04 19:53:45.184607] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5-rank_avg_amount_10, 0.001s
[2022-04-04 19:53:45.187311] INFO: derived_feature_extractor: 提取完成 rank_return_0-rank_return_5, 0.001s
[2022-04-04 19:53:45.189775] INFO: derived_feature_extractor: 提取完成 rank_return_5-rank_return_10, 0.001s
[2022-04-04 19:53:45.192224] INFO: derived_feature_extractor: 提取完成 beta_csi300_30_0/10, 0.001s
[2022-04-04 19:53:45.194687] INFO: derived_feature_extractor: 提取完成 beta_csi300_60_0/10, 0.001s
[2022-04-04 19:53:45.197458] INFO: derived_feature_extractor: 提取完成 swing_volatility_5_0/swing_volatility_30_0-1, 0.001s
[2022-04-04 19:53:45.200080] INFO: derived_feature_extractor: 提取完成 swing_volatility_30_0/swing_volatility_60_0-1, 0.001s
[2022-04-04 19:53:45.202820] INFO: derived_feature_extractor: 提取完成 ta_atr_14_0/ta_atr_28_0-1, 0.001s
[2022-04-04 19:53:45.205356] INFO: derived_feature_extractor: 提取完成 ta_sma_5_0/ta_sma_20_0-1, 0.001s
[2022-04-04 19:53:45.207922] INFO: derived_feature_extractor: 提取完成 ta_sma_10_0/ta_sma_20_0-1, 0.001s
[2022-04-04 19:53:45.209826] INFO: derived_feature_extractor: 提取完成 ta_sma_20_0/ta_sma_30_0-1, 0.001s
[2022-04-04 19:53:45.211710] INFO: derived_feature_extractor: 提取完成 ta_sma_30_0/ta_sma_60_0-1, 0.001s
[2022-04-04 19:53:45.213657] INFO: derived_feature_extractor: 提取完成 ta_rsi_14_0/100, 0.001s
[2022-04-04 19:53:45.215584] INFO: derived_feature_extractor: 提取完成 ta_rsi_28_0/100, 0.001s
[2022-04-04 19:53:45.217475] INFO: derived_feature_extractor: 提取完成 ta_cci_14_0/500, 0.001s
[2022-04-04 19:53:45.219357] INFO: derived_feature_extractor: 提取完成 ta_cci_28_0/500, 0.001s
[2022-04-04 19:53:45.221158] INFO: derived_feature_extractor: 提取完成 beta_industry_30_0/10, 0.001s
[2022-04-04 19:53:45.258129] INFO: derived_feature_extractor: 提取完成 beta_industry_60_0/10, 0.001s
[2022-04-04 19:53:45.290079] INFO: derived_feature_extractor: 提取完成 ta_sma(amount_0, 10)/ta_sma(amount_0, 20)-1, 0.031s
[2022-04-04 19:53:45.321100] INFO: derived_feature_extractor: 提取完成 ta_sma(amount_0, 20)/ta_sma(amount_0, 30)-1, 0.029s
[2022-04-04 19:53:45.370025] INFO: derived_feature_extractor: 提取完成 ta_sma(amount_0, 30)/ta_sma(amount_0, 60)-1, 0.047s
[2022-04-04 19:53:45.400343] INFO: derived_feature_extractor: 提取完成 ta_sma(amount_0, 50)/ta_sma(amount_0, 100)-1, 0.029s
[2022-04-04 19:53:45.426078] INFO: derived_feature_extractor: 提取完成 ta_sma(turn_0, 10)/ta_sma(turn_0, 20)-1, 0.024s
[2022-04-04 19:53:45.464556] INFO: derived_feature_extractor: 提取完成 ta_sma(turn_0, 20)/ta_sma(turn_0, 30)-1, 0.037s
[2022-04-04 19:53:45.494372] INFO: derived_feature_extractor: 提取完成 ta_sma(turn_0, 30)/ta_sma(turn_0, 60)-1, 0.028s
[2022-04-04 19:53:45.524773] INFO: derived_feature_extractor: 提取完成 ta_sma(turn_0, 50)/ta_sma(turn_0, 100)-1, 0.029s
[2022-04-04 19:53:45.527563] INFO: derived_feature_extractor: 提取完成 high_0/low_0-1, 0.001s
[2022-04-04 19:53:45.529843] INFO: derived_feature_extractor: 提取完成 close_0/open_0-1, 0.001s
[2022-04-04 19:53:45.534102] INFO: derived_feature_extractor: 提取完成 shift(close_0,1)/close_0-1, 0.003s
[2022-04-04 19:53:45.538143] INFO: derived_feature_extractor: 提取完成 shift(close_0,2)/close_0-1, 0.003s
[2022-04-04 19:53:45.560962] INFO: derived_feature_extractor: 提取完成 shift(close_0,3)/close_0-1, 0.004s
[2022-04-04 19:53:45.565630] INFO: derived_feature_extractor: 提取完成 shift(close_0,4)/close_0-1, 0.003s
[2022-04-04 19:53:45.570138] INFO: derived_feature_extractor: 提取完成 shift(close_0,5)/close_0-1, 0.003s
[2022-04-04 19:53:45.574616] INFO: derived_feature_extractor: 提取完成 shift(close_0,10)/close_0-1, 0.003s
[2022-04-04 19:53:45.578862] INFO: derived_feature_extractor: 提取完成 shift(close_0,20)/close_0-1, 0.003s
[2022-04-04 19:53:45.606249] INFO: derived_feature_extractor: 提取完成 ta_sma(high_0-low_0, 5)/ta_sma(high_0-low_0, 20)-1, 0.026s
[2022-04-04 19:53:45.659299] INFO: derived_feature_extractor: 提取完成 ta_sma(high_0-low_0, 10)/ta_sma(high_0-low_0, 20)-1, 0.051s
[2022-04-04 19:53:45.689847] INFO: derived_feature_extractor: 提取完成 ta_sma(high_0-low_0, 20)/ta_sma(high_0-low_0, 30)-1, 0.029s
[2022-04-04 19:53:45.717001] INFO: derived_feature_extractor: 提取完成 ta_sma(high_0-low_0, 30)/ta_sma(high_0-low_0, 60)-1, 0.026s
[2022-04-04 19:53:45.762865] INFO: derived_feature_extractor: 提取完成 ta_sma(high_0-low_0, 50)/ta_sma(high_0-low_0, 100)-1, 0.044s
[2022-04-04 19:53:45.774598] INFO: derived_feature_extractor: 提取完成 std(close_0,5)/std(close_0,20)-1, 0.010s
[2022-04-04 19:53:45.785360] INFO: derived_feature_extractor: 提取完成 std(close_0,10)/std(close_0,20)-1, 0.009s
[2022-04-04 19:53:45.796344] INFO: derived_feature_extractor: 提取完成 std(close_0,20)/std(close_0,30)-1, 0.009s
[2022-04-04 19:53:45.806736] INFO: derived_feature_extractor: 提取完成 std(close_0,30)/std(close_0,60)-1, 0.009s
[2022-04-04 19:53:45.818547] INFO: derived_feature_extractor: 提取完成 std(close_0,50)/std(close_0,100)-1, 0.010s
[2022-04-04 19:53:45.866923] INFO: derived_feature_extractor: /y_2022, 585
[2022-04-04 19:53:46.202676] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[1.090523s].
[2022-04-04 19:53:46.217048] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-04-04 19:53:46.296095] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.079044s].
[2022-04-04 19:53:46.305564] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.001592s].
[2022-04-04 19:53:46.324253] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.011986s].
[2022-04-04 19:53:46.335570] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.004551s].
[2022-04-04 19:53:46.353948] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.012196s].
[2022-04-04 19:53:46.370721] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.01001s].
[2022-04-04 19:53:46.414064] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-04 19:53:46.467004] INFO: moduleinvoker: cached.v3 运行完成[0.052926s].
[2022-04-04 19:53:46.469288] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.078075s].
[2022-04-04 19:53:46.473791] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2022-04-04 19:53:46.567914] INFO: dl_model_train: 准备训练,训练样本个数:3761,迭代次数:2
[2022-04-04 19:53:47.561024] INFO: dl_model_train: 训练结束,耗时:0.99s
[2022-04-04 19:53:47.591630] INFO: moduleinvoker: dl_model_train.v1 运行完成[1.117823s].
[2022-04-04 19:53:47.596303] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2022-04-04 19:53:47.734762] ERROR: moduleinvoker: module name: dl_model_predict, module version: v1, trackeback: AttributeError: 'int' object has no attribute 'assign'
During handling of the above exception, another exception occurred:
AttributeError: 'int' object has no attribute 'assign'
Epoch 1/2
1/1 - 1s - loss: 0.1363 - mse: 0.1363
Epoch 2/2
1/1 - 0s - loss: 0.1068 - mse: 0.1068
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
AttributeError: 'int' object has no attribute 'assign'
During handling of the above exception, another exception occurred:
AttributeError Traceback (most recent call last)
<ipython-input-5-59767be951b5> in <module>
366 )
367
--> 368 m11 = M.dl_model_predict.v1(
369 trained_model=m5.data,
370 input_data=m14.data,
AttributeError: 'int' object has no attribute 'assign'