{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-106:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-106:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-113:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-122:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-129:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-165:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-122:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-141:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-165:training_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"-165:predict_ds","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-113:input_data","SourceOutputPortId":"-106:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-113:data"},{"DestinationInputPortId":"-129:input_data","SourceOutputPortId":"-122:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-129:data"},{"DestinationInputPortId":"-141:options_data","SourceOutputPortId":"-165:predictions"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-106","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-106"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-106"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-106","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-113","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-113"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-113"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-113","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-122","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-122"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-122"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-122","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-129","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-129"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-129"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-129","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-141","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-141"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-141","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-165","ModuleId":"BigQuantSpace.xgboost.xgboost-v1","ModuleParameters":[{"Name":"num_boost_round","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"objective","Value":"排序(pairwise)","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"booster","Value":"gbtree","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_depth","Value":6,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"key_cols","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"group_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"other_train_parameters","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-165"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-165"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"-165"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"predict_ds","NodeId":"-165"}],"OutputPortsInternal":[{"Name":"output_model","NodeId":"-165","OutputType":null},{"Name":"predictions","NodeId":"-165","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='71,185,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='706,-22,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,128,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><NodePosition Node='-86' Position='1078,418,200,200'/><NodePosition Node='-106' Position='381,188,200,200'/><NodePosition Node='-113' Position='385,280,200,200'/><NodePosition Node='-122' Position='1078,236,200,200'/><NodePosition Node='-129' Position='1081,327,200,200'/><NodePosition Node='-141' Position='1037,751,200,200'/><NodePosition Node='-165' Position='653,555,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2019-01-28 16:24:42.422467] INFO: bigquant: instruments.v2 开始运行..
[2019-01-28 16:24:42.434800] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.436283] INFO: bigquant: instruments.v2 运行完成[0.01384s].
[2019-01-28 16:24:42.440854] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
[2019-01-28 16:24:42.447409] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.449193] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.008353s].
[2019-01-28 16:24:42.452164] INFO: bigquant: input_features.v1 开始运行..
[2019-01-28 16:24:42.458288] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.459843] INFO: bigquant: input_features.v1 运行完成[0.00766s].
[2019-01-28 16:24:42.473725] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-01-28 16:24:42.481569] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.483122] INFO: bigquant: general_feature_extractor.v7 运行完成[0.009393s].
[2019-01-28 16:24:42.487085] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-01-28 16:24:42.494079] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.495543] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.008484s].
[2019-01-28 16:24:42.499280] INFO: bigquant: join.v3 开始运行..
[2019-01-28 16:24:42.505799] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.506836] INFO: bigquant: join.v3 运行完成[0.007541s].
[2019-01-28 16:24:42.510056] INFO: bigquant: dropnan.v1 开始运行..
[2019-01-28 16:24:42.515563] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.516488] INFO: bigquant: dropnan.v1 运行完成[0.006467s].
[2019-01-28 16:24:42.519915] INFO: bigquant: instruments.v2 开始运行..
[2019-01-28 16:24:42.525174] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.540339] INFO: bigquant: instruments.v2 运行完成[0.020365s].
[2019-01-28 16:24:42.549281] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-01-28 16:24:42.555673] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.557094] INFO: bigquant: general_feature_extractor.v7 运行完成[0.007811s].
[2019-01-28 16:24:42.560659] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-01-28 16:24:42.567051] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.568230] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.00759s].
[2019-01-28 16:24:42.571140] INFO: bigquant: dropnan.v1 开始运行..
[2019-01-28 16:24:42.577041] INFO: bigquant: 命中缓存
[2019-01-28 16:24:42.578413] INFO: bigquant: dropnan.v1 运行完成[0.00725s].
[2019-01-28 16:24:42.581621] INFO: bigquant: xgboost.v1 开始运行..
[16:25:12] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:25:28] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:25:46] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:26:02] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:26:19] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:26:35] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:26:51] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:27:07] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:27:24] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:27:40] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:27:58] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:28:15] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:28:31] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:28:48] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:29:04] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:29:22] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 124 extra nodes, 0 pruned nodes, max_depth=6
[16:29:38] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:29:54] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:30:10] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 118 extra nodes, 0 pruned nodes, max_depth=6
[16:30:27] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 124 extra nodes, 0 pruned nodes, max_depth=6
[16:30:44] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 120 extra nodes, 0 pruned nodes, max_depth=6
[16:31:02] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:31:19] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 124 extra nodes, 0 pruned nodes, max_depth=6
[16:31:37] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 114 extra nodes, 0 pruned nodes, max_depth=6
[16:31:53] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 120 extra nodes, 0 pruned nodes, max_depth=6
[16:32:10] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 124 extra nodes, 0 pruned nodes, max_depth=6
[16:32:27] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:32:43] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[16:33:01] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 122 extra nodes, 0 pruned nodes, max_depth=6
[16:33:19] /workspace/src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 126 extra nodes, 0 pruned nodes, max_depth=6
[2019-01-28 16:33:27.286447] INFO: bigquant: xgboost.v1 运行完成[524.704796s].
[2019-01-28 16:33:27.302367] INFO: bigquant: backtest.v8 开始运行..
[2019-01-28 16:33:27.304609] INFO: bigquant: biglearning backtest:V8.1.7
[2019-01-28 16:33:27.305521] INFO: bigquant: product_type:stock by specified
[2019-01-28 16:33:42.775059] INFO: bigquant: 读取股票行情完成:1990277
[2019-01-28 16:34:05.106943] INFO: algo: TradingAlgorithm V1.4.5
[2019-01-28 16:34:15.853533] INFO: algo: trading transform...
[2019-01-28 16:34:29.720732] INFO: Performance: Simulated 488 trading days out of 488.
[2019-01-28 16:34:29.722059] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2019-01-28 16:34:29.723007] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
- 收益率419.55%
- 年化收益率134.18%
- 基准收益率-6.33%
- 阿尔法0.92
- 贝塔0.92
- 夏普比率2.24
- 胜率0.64
- 盈亏比0.95
- 收益波动率40.49%
- 信息比率0.21
- 最大回撤50.32%
[2019-01-28 16:34:33.286362] INFO: bigquant: backtest.v8 运行完成[65.983968s].