{"description":"实验创建于2023/1/9","graph":{"edges":[{"to_node_id":"-463:instruments","from_node_id":"-450:data"},{"to_node_id":"-473:instruments","from_node_id":"-450:data"},{"to_node_id":"-463:features","from_node_id":"-458:data"},{"to_node_id":"-473:options_data","from_node_id":"-463:data"}],"nodes":[{"node_id":"-450","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-01-10","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-450"}],"output_ports":[{"name":"data","node_id":"-450"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-458","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-458"}],"output_ports":[{"name":"data","node_id":"-458"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-463","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-463"},{"name":"features","node_id":"-463"}],"output_ports":[{"name":"data","node_id":"-463"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-473","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-473"},{"name":"options_data","node_id":"-473"},{"name":"history_ds","node_id":"-473"},{"name":"benchmark_ds","node_id":"-473"},{"name":"trading_calendar","node_id":"-473"}],"output_ports":[{"name":"raw_perf","node_id":"-473"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-450' Position='228.03927612304688,-114.3492202758789,200,200'/><node_position Node='-458' Position='644.1282348632812,-112.58613586425781,200,200'/><node_position Node='-463' Position='354.9816589355469,44.32878112792969,200,200'/><node_position Node='-473' Position='238.61776733398438,218.8745574951172,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-01-10 06:28:41.941088] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-01-10 06:28:41.951231] INFO: moduleinvoker: 命中缓存
[2023-01-10 06:28:41.953318] INFO: moduleinvoker: instruments.v2 运行完成[0.012241s].
[2023-01-10 06:28:41.958091] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-01-10 06:28:41.966800] INFO: moduleinvoker: 命中缓存
[2023-01-10 06:28:41.968461] INFO: moduleinvoker: input_features.v1 运行完成[0.010375s].
[2023-01-10 06:28:41.984863] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-01-10 06:28:41.992373] INFO: moduleinvoker: 命中缓存
[2023-01-10 06:28:41.996336] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.011479s].
[2023-01-10 06:28:42.030408] ERROR: moduleinvoker: module name: trade, module version: v4, trackeback: IndexError: list index out of range
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-2-71c15780f208> in <module>
104 )
105
--> 106 m4 = M.trade.v4(
107 instruments=m1.data,
108 options_data=m3.data,
IndexError: list index out of range