{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-503:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-510:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-81:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70:data"},{"to_node_id":"-86:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76:data"},{"to_node_id":"-361:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-522:input_1","from_node_id":"-86:data"},{"to_node_id":"-1181:input_data","from_node_id":"-361:data_1"},{"to_node_id":"-503:instruments","from_node_id":"-494:data"},{"to_node_id":"-510:input_data","from_node_id":"-503:data"},{"to_node_id":"-516:input_data","from_node_id":"-510:data"},{"to_node_id":"-519:input_1","from_node_id":"-516:data"},{"to_node_id":"-1155:features","from_node_id":"-519:data_1"},{"to_node_id":"-1174:data","from_node_id":"-522:data_1"},{"to_node_id":"-1174:model","from_node_id":"-1155:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-81:options_data","from_node_id":"-1174:predictions"},{"to_node_id":"-1155:training_ds","from_node_id":"-1181:data"},{"to_node_id":"-1155:test_ds","from_node_id":"-1181:left_data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 {{web_host_url}}docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <{{web_host_url}}docs/big_expr.html>`_\n\n# 计算收益:2日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\nreturn_40\nrank_return_5\navg_turn_10\navg_turn_20\navg_turn_40\nfs_common_equity_0\nmarket_cap_0\nrank_market_cap_0\nmarket_cap_float_0\nrank_market_cap_float_0\npe_ttm_0\nrank_pe_ttm_0\npb_lf_0\nrank_pb_lf_0\nps_ttm_0\nrank_ps_ttm_0\nmf_net_amount_5\nmf_net_amount_10\nmf_net_amount_20\navg_mf_net_amount_5\navg_mf_net_amount_10\navg_mf_net_amount_20\nrank_avg_mf_net_amount_5\nfs_net_profit_yoy_0\nrank_fs_net_profit_yoy_0\nfs_net_profit_qoq_0\nrank_fs_net_profit_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_ttm_0\nfs_roa_0\nfs_roa_ttm_0\nfs_eps_0\nfs_bps_0\nfs_cash_ratio_0\nfs_net_cash_flow_0\nfs_net_cash_flow_ttm_0\nfs_current_assets_0\nfs_non_current_assets_0\nfs_current_liabilities_0\nlist_board_0\ncompany_found_date_0\nst_status_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v6","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"20","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-29"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v2","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-35"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2020-06-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v6","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"20","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-70"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v2","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-76"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-81","module_id":"BigQuantSpace.trade.trade-v3","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-06-01","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 8\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.4\n context.options['hold_days'] = 2\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"10000","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-81"},{"name":"options_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-81"}],"output_ports":[{"name":"raw_perf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-81"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-361","module_id":"BigQuantSpace.filtet_st_stock_tomo.filtet_st_stock_tomo-v3","parameters":[],"input_ports":[{"name":"input_1","node_id":"-361"}],"output_ports":[{"name":"data_1","node_id":"-361"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-494","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-06-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-494"}],"output_ports":[{"name":"data","node_id":"-494"}],"cacheable":true,"seq_num":15,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-503","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v6","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"20","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-503"},{"name":"features","node_id":"-503"}],"output_ports":[{"name":"data","node_id":"-503"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-510","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v2","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-510"},{"name":"features","node_id":"-510"}],"output_ports":[{"name":"data","node_id":"-510"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-516","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-516"}],"output_ports":[{"name":"data","node_id":"-516"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-519","module_id":"BigQuantSpace.filtet_st_stock_tomo.filtet_st_stock_tomo-v3","parameters":[],"input_ports":[{"name":"input_1","node_id":"-519"}],"output_ports":[{"name":"data_1","node_id":"-519"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-522","module_id":"BigQuantSpace.filtet_st_stock_tomo.filtet_st_stock_tomo-v3","parameters":[],"input_ports":[{"name":"input_1","node_id":"-522"}],"output_ports":[{"name":"data_1","node_id":"-522"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-1155","module_id":"BigQuantSpace.GBDT_train.GBDT_train-v1","parameters":[{"name":"num_boost_round","value":120,"type":"Literal","bound_global_parameter":null},{"name":"early_stopping_rounds","value":"","type":"Literal","bound_global_parameter":null},{"name":"objective","value":"reg:linear","type":"Literal","bound_global_parameter":null},{"name":"num_class","value":"","type":"Literal","bound_global_parameter":null},{"name":"eval_metric","value":"error","type":"Literal","bound_global_parameter":null},{"name":"booster","value":"gbtree","type":"Literal","bound_global_parameter":null},{"name":"eta","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"gamma","value":0.0001,"type":"Literal","bound_global_parameter":null},{"name":"_lambda","value":0,"type":"Literal","bound_global_parameter":null},{"name":"lambda_bias","value":0,"type":"Literal","bound_global_parameter":null},{"name":"alpha","value":0,"type":"Literal","bound_global_parameter":null},{"name":"max_depth","value":6,"type":"Literal","bound_global_parameter":null},{"name":"max_leaf_nodes","value":30,"type":"Literal","bound_global_parameter":null},{"name":"subsample","value":0.8,"type":"Literal","bound_global_parameter":null},{"name":"xgb_param","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-1155"},{"name":"features","node_id":"-1155"},{"name":"test_ds","node_id":"-1155"}],"output_ports":[{"name":"model","node_id":"-1155"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-1174","module_id":"BigQuantSpace.GBDT_predict.GBDT_predict-v1","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"-1174"},{"name":"data","node_id":"-1174"}],"output_ports":[{"name":"predictions","node_id":"-1174"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-1181","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"date<\"2015-01-01\"","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1181"}],"output_ports":[{"name":"data","node_id":"-1181"},{"name":"left_data","node_id":"-1181"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='213,-30,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='662,23,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-29' Position='381,185,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-35' Position='387,280,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='311,337.77130126953125,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1095,124,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-70' Position='1078,236,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-76' Position='1078,327,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-81' Position='1063,731,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='337,414,200,200'/><node_position Node='-86' Position='1078,419,200,200'/><node_position Node='-361' Position='417,494,200,200'/><node_position Node='-494' Position='712.8881225585938,181.05841064453125,200,200'/><node_position Node='-503' Position='771,296,200,200'/><node_position Node='-510' Position='730,406,200,200'/><node_position Node='-516' Position='742,472,200,200'/><node_position Node='-519' Position='743,528,200,200'/><node_position Node='-522' Position='1135,513,200,200'/><node_position Node='-1155' Position='739.8551025390625,647.70361328125,200,200'/><node_position Node='-1174' Position='1119.9576416015625,630.517578125,200,200'/><node_position Node='-1181' Position='658.8843994140625,549.0133056640625,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-06-05 21:56:31.982846] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-06-05 21:56:32.008620] INFO: moduleinvoker: 命中缓存
[2022-06-05 21:56:32.012400] INFO: moduleinvoker: instruments.v2 运行完成[0.029605s].
[2022-06-05 21:56:32.041937] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-06-05 21:56:32.054156] INFO: moduleinvoker: 命中缓存
[2022-06-05 21:56:32.452259] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.410318s].
[2022-06-05 21:56:32.473572] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-06-05 21:56:32.482387] INFO: moduleinvoker: 命中缓存
[2022-06-05 21:56:32.485749] INFO: moduleinvoker: input_features.v1 运行完成[0.012171s].
[2022-06-05 21:56:32.529153] INFO: moduleinvoker: general_feature_extractor.v6 开始运行..
[2022-06-05 21:56:32.544194] INFO: moduleinvoker: 命中缓存
[2022-06-05 21:56:32.547127] INFO: moduleinvoker: general_feature_extractor.v6 运行完成[0.017982s].
[2022-06-05 21:56:32.575964] INFO: moduleinvoker: derived_feature_extractor.v2 开始运行..
[2022-06-05 21:56:32.588094] INFO: moduleinvoker: 命中缓存
[2022-06-05 21:56:32.592635] INFO: moduleinvoker: derived_feature_extractor.v2 运行完成[0.01669s].
[2022-06-05 21:56:32.616278] INFO: moduleinvoker: join.v3 开始运行..
[2022-06-05 21:56:52.638564] INFO: join: /y_2009, 行数=0/35198, 耗时=2.890547s
[2022-06-05 21:57:00.368903] INFO: join: /y_2010, 行数=431039/431567, 耗时=7.724832s
[2022-06-05 21:57:08.417082] INFO: join: /y_2011, 行数=510931/511455, 耗时=8.041491s
[2022-06-05 21:57:16.764344] INFO: join: /y_2012, 行数=564591/565675, 耗时=8.337413s
[2022-06-05 21:57:25.108256] INFO: join: /y_2013, 行数=563149/564168, 耗时=8.336594s
[2022-06-05 21:57:34.165059] INFO: join: /y_2014, 行数=567883/569948, 耗时=9.042061s
[2022-06-05 21:57:42.607729] INFO: join: /y_2015, 行数=560441/569698, 耗时=8.434098s
[2022-06-05 21:57:51.660488] INFO: join: /y_2016, 行数=637482/641546, 耗时=9.035184s
[2022-06-05 21:58:01.826235] INFO: join: /y_2017, 行数=738271/743233, 耗时=10.15838s
[2022-06-05 21:58:13.031455] INFO: join: /y_2018, 行数=813531/816987, 耗时=11.196627s
[2022-06-05 21:58:24.950649] INFO: join: /y_2019, 行数=873854/884867, 耗时=11.909214s
[2022-06-05 21:58:25.676366] INFO: join: 最终行数: 6261172
[2022-06-05 21:58:25.725605] INFO: moduleinvoker: join.v3 运行完成[113.109331s].
[2022-06-05 21:58:25.746304] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-06-05 21:58:26.332950] INFO: dropnan: /y_2009, 0/0
[2022-06-05 21:58:27.870654] INFO: dropnan: /y_2010, 67019/431039
[2022-06-05 21:58:29.991043] INFO: dropnan: /y_2011, 114673/510931
[2022-06-05 21:58:33.622072] INFO: dropnan: /y_2012, 529964/564591
[2022-06-05 21:58:37.196700] INFO: dropnan: /y_2013, 546393/563149
[2022-06-05 21:58:41.431069] INFO: dropnan: /y_2014, 549485/567883
[2022-06-05 21:58:45.295064] INFO: dropnan: /y_2015, 535664/560441
[2022-06-05 21:58:50.270990] INFO: dropnan: /y_2016, 613317/637482
[2022-06-05 21:58:55.232332] INFO: dropnan: /y_2017, 692889/738271
[2022-06-05 21:59:01.056609] INFO: dropnan: /y_2018, 745239/813531
[2022-06-05 21:59:06.824867] INFO: dropnan: /y_2019, 677932/873854
[2022-06-05 21:59:07.155054] INFO: dropnan: 行数: 5072575/6261172
[2022-06-05 21:59:07.201468] INFO: moduleinvoker: dropnan.v1 运行完成[41.455117s].
[2022-06-05 21:59:09.889975] INFO: moduleinvoker: filtet_st_stock_tomo.v3 开始运行..
[2022-06-05 22:00:21.245052] INFO: moduleinvoker: filtet_st_stock_tomo.v3 运行完成[71.355106s].
[2022-06-05 22:00:21.260489] INFO: moduleinvoker: filter.v3 开始运行..
[2022-06-05 22:00:21.338298] INFO: filter: 使用表达式 date[2022-06-05 22:00:54.503370] INFO: filter: 过滤 /data, 1755849/3202857/4958706
[2022-06-05 22:00:54.832312] INFO: moduleinvoker: filter.v3 运行完成[33.571809s].
[2022-06-05 22:00:54.880882] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-06-05 22:00:54.891584] INFO: moduleinvoker: 命中缓存
[2022-06-05 22:00:54.894282] INFO: moduleinvoker: instruments.v2 运行完成[0.013395s].
[2022-06-05 22:00:54.961295] INFO: moduleinvoker: general_feature_extractor.v6 开始运行..
[2022-06-05 22:00:54.975197] INFO: moduleinvoker: 命中缓存
[2022-06-05 22:00:54.977855] INFO: moduleinvoker: general_feature_extractor.v6 运行完成[0.016571s].
[2022-06-05 22:00:54.990091] INFO: moduleinvoker: derived_feature_extractor.v2 开始运行..
[2022-06-05 22:00:55.019729] INFO: moduleinvoker: 命中缓存
[2022-06-05 22:00:55.022358] INFO: moduleinvoker: derived_feature_extractor.v2 运行完成[0.032275s].
[2022-06-05 22:00:55.068338] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-06-05 22:00:55.109497] INFO: moduleinvoker: 命中缓存
[2022-06-05 22:00:55.112091] INFO: moduleinvoker: dropnan.v1 运行完成[0.043747s].
[2022-06-05 22:00:55.262732] INFO: moduleinvoker: filtet_st_stock_tomo.v3 开始运行..
[2022-06-05 22:00:55.272815] INFO: moduleinvoker: 命中缓存
[2022-06-05 22:00:55.275232] INFO: moduleinvoker: filtet_st_stock_tomo.v3 运行完成[0.012517s].
[2022-06-05 22:00:55.289331] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-06-05 22:00:55.305071] INFO: moduleinvoker: 命中缓存
[2022-06-05 22:00:55.307275] INFO: moduleinvoker: instruments.v2 运行完成[0.01797s].
[2022-06-05 22:00:55.385594] INFO: moduleinvoker: general_feature_extractor.v6 开始运行..
[2022-06-05 22:00:55.435491] INFO: moduleinvoker: 命中缓存
[2022-06-05 22:00:55.437892] INFO: moduleinvoker: general_feature_extractor.v6 运行完成[0.052337s].
[2022-06-05 22:00:55.445845] INFO: moduleinvoker: derived_feature_extractor.v2 开始运行..
[2022-06-05 22:00:55.454747] INFO: moduleinvoker: 命中缓存
[2022-06-05 22:00:55.456853] INFO: moduleinvoker: derived_feature_extractor.v2 运行完成[0.011s].
[2022-06-05 22:00:55.488129] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-06-05 22:00:55.502648] INFO: moduleinvoker: 命中缓存
[2022-06-05 22:00:55.505222] INFO: moduleinvoker: dropnan.v1 运行完成[0.017082s].
[2022-06-05 22:00:55.582458] INFO: moduleinvoker: filtet_st_stock_tomo.v3 开始运行..
[2022-06-05 22:00:55.605086] INFO: moduleinvoker: 命中缓存
[2022-06-05 22:00:55.607316] INFO: moduleinvoker: filtet_st_stock_tomo.v3 运行完成[0.024905s].
[2022-06-05 22:00:55.684110] INFO: moduleinvoker: GBDT_train.v1 开始运行..
[2022-06-05 22:00:55.701623] ERROR: moduleinvoker: module name: GBDT_train, module version: v1, trackeback: _pickle.UnpicklingError: invalid load key, 'H'.
---------------------------------------------------------------------------
UnpicklingError Traceback (most recent call last)
<ipython-input-1-c766fc43f66f> in <module>
249 )
250
--> 251 m6 = M.GBDT_train.v1(
252 training_ds=m22.data,
253 features=m20.data_1,
UnpicklingError: invalid load key, 'H'.