{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-274:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-274:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-119:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-136:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-288:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-136:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-119:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-281:input_data","from_node_id":"-274:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"-295:input_data","from_node_id":"-288:data"},{"to_node_id":"-86:input_data","from_node_id":"-295:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-119:model"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-02-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"000021.SZA\n002460.SZA\n000027.SZA\n000050.SZA\n000333.SZA\n000338.SZA\n000521.SZA\n000538.SZA\n000615.SZA\n000625.SZA\n000626.SZA\n000651.SZA\n000661.SZA\n000713.SZA\n000733.SZA\n000768.SZA\n000798.SZA\n000858.SZA\n000928.SZA\n000963.SZA\n000995.SZA\n002007.SZA\n002055.SZA\n002074.SZA\n002092.SZA\n002125.SZA\n002151.SZA\n002156.SZA\n002162.SZA\n002163.SZA\n002179.SZA\n002184.SZA\n002185.SZA\n002190.SZA\n002192.SZA\n002221.SZA\n002237.SZA\n002240.SZA\n002245.SZA\n002271.SZA\n002340.SZA\n002352.SZA\n002371.SZA\n002386.SZA\n002389.SZA\n002407.SZA\n002415.SZA\n002430.SZA\n002466.SZA\n002497.SZA\n002529.SZA\n002557.SZA\n002594.SZA\n002601.SZA\n002607.SZA\n002625.SZA\n002668.SZA\n002709.SZA\n002756.SZA\n002799.SZA\n002812.SZA\n002813.SZA\n002821.SZA\n002906.SZA\n002920.SZA\n300003.SZA\n300014.SZA\n300015.SZA\n300034.SZA\n300037.SZA\n300059.SZA\n300122.SZA\n300124.SZA\n300142.SZA\n300244.SZA\n300251.SZA\n300274.SZA\n300316.SZA\n300339.SZA\n300340.SZA\n300347.SZA\n300357.SZA\n300433.SZA\n300450.SZA\n300477.SZA\n300496.SZA\n300529.SZA\n300558.SZA\n300567.SZA\n300576.SZA\n300581.SZA\n300595.SZA\n300601.SZA\n300604.SZA\n300623.SZA\n300648.SZA\n300661.SZA\n300685.SZA\n300690.SZA\n300699.SZA\n300719.SZA\n300722.SZA\n300726.SZA\n300750.SZA\n300759.SZA\n300760.SZA\n300763.SZA\n300769.SZA\n600016.SHA\n600031.SHA\n600089.SHA\n600110.SHA\n600183.SHA\n600196.SHA\n600198.SHA\n600237.SHA\n600256.SHA\n600276.SHA\n600295.SHA\n600305.SHA\n600309.SHA\n600316.SHA\n600325.SHA\n600392.SHA\n600398.SHA\n600418.SHA\n600438.SHA\n600460.SHA\n600499.SHA\n600516.SHA\n600570.SHA\n600584.SHA\n600585.SHA\n600596.SHA\n600660.SHA\n600685.SHA\n600690.SHA\n600699.SHA\n600703.SHA\n600733.SHA\n600745.SHA\n600760.SHA\n600763.SHA\n600805.SHA\n600809.SHA\n600862.SHA\n600864.SHA\n600882.SHA\n600886.SHA\n600887.SHA\n600893.SHA\n600977.SHA\n600988.SHA\n601012.SHA\n601100.SHA\n601611.SHA\n601633.SHA\n601865.SHA\n601866.SHA\n601869.SHA\n601888.SHA\n601899.SHA\n601901.SHA\n601919.SHA\n603005.SHA\n603019.SHA\n603025.SHA\n603027.SHA\n603185.SHA\n603197.SHA\n603259.SHA\n603260.SHA\n603267.SHA\n603501.SHA\n603517.SHA\n603605.SHA\n603650.SHA\n603678.SHA\n603707.SHA\n603799.SHA\n603806.SHA\n603882.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-02-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-03-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"000021.SZA\n002460.SZA\n000027.SZA\n000050.SZA\n000333.SZA\n000338.SZA\n000521.SZA\n000538.SZA\n000615.SZA\n000625.SZA\n000626.SZA\n000651.SZA\n000661.SZA\n000713.SZA\n000733.SZA\n000768.SZA\n000798.SZA\n000858.SZA\n000928.SZA\n000963.SZA\n000995.SZA\n002007.SZA\n002055.SZA\n002074.SZA\n002092.SZA\n002125.SZA\n002151.SZA\n002156.SZA\n002162.SZA\n002163.SZA\n002179.SZA\n002184.SZA\n002185.SZA\n002190.SZA\n002192.SZA\n002221.SZA\n002237.SZA\n002240.SZA\n002245.SZA\n002271.SZA\n002340.SZA\n002352.SZA\n002371.SZA\n002386.SZA\n002389.SZA\n002407.SZA\n002415.SZA\n002430.SZA\n002466.SZA\n002497.SZA\n002529.SZA\n002557.SZA\n002594.SZA\n002601.SZA\n002607.SZA\n002625.SZA\n002668.SZA\n002709.SZA\n002756.SZA\n002799.SZA\n002812.SZA\n002813.SZA\n002821.SZA\n002906.SZA\n002920.SZA\n300003.SZA\n300014.SZA\n300015.SZA\n300034.SZA\n300037.SZA\n300059.SZA\n300122.SZA\n300124.SZA\n300142.SZA\n300244.SZA\n300251.SZA\n300274.SZA\n300316.SZA\n300339.SZA\n300340.SZA\n300347.SZA\n300357.SZA\n300433.SZA\n300450.SZA\n300477.SZA\n300496.SZA\n300529.SZA\n300558.SZA\n300567.SZA\n300576.SZA\n300581.SZA\n300595.SZA\n300601.SZA\n300604.SZA\n300623.SZA\n300648.SZA\n300661.SZA\n300685.SZA\n300690.SZA\n300699.SZA\n300719.SZA\n300722.SZA\n300726.SZA\n300750.SZA\n300759.SZA\n300760.SZA\n300763.SZA\n300769.SZA\n600016.SHA\n600031.SHA\n600089.SHA\n600110.SHA\n600183.SHA\n600196.SHA\n600198.SHA\n600237.SHA\n600256.SHA\n600276.SHA\n600295.SHA\n600305.SHA\n600309.SHA\n600316.SHA\n600325.SHA\n600392.SHA\n600398.SHA\n600418.SHA\n600438.SHA\n600460.SHA\n600499.SHA\n600516.SHA\n600570.SHA\n600584.SHA\n600585.SHA\n600596.SHA\n600660.SHA\n600685.SHA\n600690.SHA\n600699.SHA\n600703.SHA\n600733.SHA\n600745.SHA\n600760.SHA\n600763.SHA\n600805.SHA\n600809.SHA\n600862.SHA\n600864.SHA\n600882.SHA\n600886.SHA\n600887.SHA\n600893.SHA\n600977.SHA\n600988.SHA\n601012.SHA\n601100.SHA\n601611.SHA\n601633.SHA\n601865.SHA\n601866.SHA\n601869.SHA\n601888.SHA\n601899.SHA\n601901.SHA\n601919.SHA\n603005.SHA\n603019.SHA\n603025.SHA\n603027.SHA\n603185.SHA\n603197.SHA\n603259.SHA\n603260.SHA\n603267.SHA\n603501.SHA\n603517.SHA\n603605.SHA\n603650.SHA\n603678.SHA\n603707.SHA\n603799.SHA\n603806.SHA\n603882.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-274","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-274"},{"name":"features","node_id":"-274"}],"output_ports":[{"name":"data","node_id":"-274"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"60","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-119","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-119"},{"name":"features","node_id":"-119"},{"name":"test_ds","node_id":"-119"},{"name":"base_model","node_id":"-119"}],"output_ports":[{"name":"model","node_id":"-119"},{"name":"feature_gains","node_id":"-119"},{"name":"m_lazy_run","node_id":"-119"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-136","module_id":"BigQuantSpace.hftrade.hftrade-v2","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 交易引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n df = DataSource(\"bar1d_index_CN_STOCK_A\").read(instruments=\"000300.HIX\",start_date=\"2021-01-01\",end_date=\"2021-08-01\")\n df[\"ma\"] = df.close.rolling(5).mean()\n df[\"signal\"] = df.apply(lambda x:1 if x.close>x.ma else 0,axis=1)\n df[\"signal\"] = df[\"signal\"].shift(1) #取昨日的收盘信号\n df=df[[\"date\",\"signal\"]]\n #信号数据\n context.signal_df = df\n #每支股票占比\n context.order_pct = 0.01\n #获取预测股票集\n context.to_buy = context.options['data'].read()\n inst = context.instruments\n context.subscribe(inst)\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 交易引擎:每个单位时间开盘前调用一次。\ndef bigquant_run(context, data):\n now = data.current_dt.strftime('%Y-%m-%d')\n context.today = data.current_dt.strftime('%Y-%m-%d')\n context.signal = context.signal_df[context.signal_df.date==now][\"signal\"].iloc[0]\n context.handle_flag = 0 #由于是分钟回测,每天只需要处理一次买卖\n context.sold_stock_list = []\n context.position_check = context.get_positions()\n print('日期{} 持仓 {} -----------'.format(now, context.position_check))\n","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:bar数据处理函数,每个单位执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"#卖出函数\ndef sell_stock(context,data,msg):\n #获取当前所有持仓\n stock_hold_now = context.get_account_positions()\n for instr in stock_hold_now:\n if instr not in context.sold_stock_list:\n #卖出可用仓位(可能有今仓)\n position = context.get_position(instr).avail_qty\n if(position>0):\n #最新价格\n price = data.current(instr, 'close')\n context.order(instr, -position, price, order_type=OrderType.MARKET)\n context.sold_stock_list.append(instr)\n print(\"{}卖出{} {}\".format(msg,instr,position))\n\n# 交易引擎:bar数据处理函数,每个单位执行一次\ndef bigquant_run(context, data):\n \n #signal为0开盘卖\n if context.signal == 0:\n msg = context.today+\" 开盘\"\n sell_stock(context,data,msg)\n \n current_stopwin_stock = []\n current_stoploss_stock = []\n if len(context.position_check) > 0:\n #------------------------START:止赢止损模块(含建仓期)---------------\n positions_cost={e:p.cost_price for e,p in context.get_positions().items()}\n avail_positions = {e: p.avail_qty for e, p in context.get_positions().items()}\n for instrument in positions_cost.keys():\n s = context.get_position(instrument).cost_price\n stock_cost=positions_cost[instrument]\n stock_market_price=data.current(context.symbol(instrument),'price')\n if stock_market_price/stock_cost-1>=0.05 and avail_positions[instrument] != 0:\n context.order_target(instrument, 0, order_type=OrderType.MARKET)\n print('止盈成功, 止盈标的{}'.format(instrument))\n current_stopwin_stock.append(instrument)\n elif stock_market_price/stock_cost-1 <= -0.02 and avail_positions[instrument] != 0:\n context.order_target(instrument, 0, order_type=OrderType.MARKET)\n print('止损成功, 止损标的{}'.format(instrument))\n current_stoploss_stock.append(instrument)\n if len(current_stopwin_stock)>0:\n# print(context.today,'止盈股票列表',current_stopwin_stock)\n context.sold_stock_list += current_stopwin_stock\n if len(current_stoploss_stock)>0:\n# print(context.today,'止损股票列表',current_stoploss_stock)\n context.sold_stock_list += current_stoploss_stock\n #--------------------------END: 止赢止损模块--------------------------\n \n\n #signal为1尾盘卖\n if context.signal == 1:\n cur_date = data.current_dt\n cur_hm = cur_date.strftime('%H:%M')\n if(cur_hm==\"14:55\"):\n msg = str(cur_date)+\" 尾盘\"\n sell_stock(context,data,msg)\n \n #每天只处理一次\n if context.handle_flag==1:\n return\n \n #买入预测集的前5只股票\n now_data = context.to_buy[context.to_buy['date']==context.today]\n today_to_buy = []\n if not now_data.empty:\n today_to_buy = now_data.instrument[:5].to_list()\n print(context.today,\"=======早盘计划买入股票 {}\".format(today_to_buy))\n \n # 获取账户资金\n total_portfolio = context.portfolio.portfolio_value\n\n for instr in today_to_buy:\n if instr not in context.sold_stock_list:\n #最新价格\n price = data.current(instr, 'close')\n\n #计算买入此股票的数量,不要超过总资金的某个比例\n context.order_value(instr, total_portfolio*context.order_pct, price, order_type=OrderType.MARKET)\n print(\"买入{}\".format(instr))\n \n context.handle_flag = 1\n\n\n \n\n","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"minute","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":1,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"False","type":"Literal","bound_global_parameter":null},{"name":"replay_bdb","value":"False","type":"Literal","bound_global_parameter":null},{"name":"show_debug_info","value":"False","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-136"},{"name":"options_data","node_id":"-136"},{"name":"history_ds","node_id":"-136"},{"name":"benchmark_ds","node_id":"-136"}],"output_ports":[{"name":"raw_perf","node_id":"-136"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='695,-14,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='864,597,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1078,75,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,465,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-274' Position='381,188,200,200'/><node_position Node='-281' Position='385,280,200,200'/><node_position Node='-288' Position='1078,236,200,200'/><node_position Node='-295' Position='1081,327,200,200'/><node_position Node='-119' Position='686,487,200,200'/><node_position Node='-136' Position='516,796,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-10-24 20:46:18.371445] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-10-24 20:46:18.394580] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:18.398213] INFO: moduleinvoker: instruments.v2 运行完成[0.026769s].
[2022-10-24 20:46:18.415601] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-10-24 20:46:18.425282] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:18.702800] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.287182s].
[2022-10-24 20:46:18.713931] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-10-24 20:46:18.724762] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:18.727128] INFO: moduleinvoker: input_features.v1 运行完成[0.013221s].
[2022-10-24 20:46:18.746595] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-10-24 20:46:18.754146] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:18.756441] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.009872s].
[2022-10-24 20:46:18.768118] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-10-24 20:46:18.775780] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:18.778212] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010099s].
[2022-10-24 20:46:18.790909] INFO: moduleinvoker: join.v3 开始运行..
[2022-10-24 20:46:18.798287] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:18.801059] INFO: moduleinvoker: join.v3 运行完成[0.010143s].
[2022-10-24 20:46:18.815174] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-10-24 20:46:18.822496] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:18.824641] INFO: moduleinvoker: dropnan.v1 运行完成[0.009476s].
[2022-10-24 20:46:18.838808] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-10-24 20:46:18.848763] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:19.116201] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.277398s].
[2022-10-24 20:46:19.123237] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-10-24 20:46:19.132777] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:19.135365] INFO: moduleinvoker: instruments.v2 运行完成[0.012127s].
[2022-10-24 20:46:19.152361] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-10-24 20:46:19.159982] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:19.163311] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.010959s].
[2022-10-24 20:46:19.174202] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-10-24 20:46:19.182057] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:19.184700] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010505s].
[2022-10-24 20:46:19.196259] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-10-24 20:46:19.204356] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:19.206997] INFO: moduleinvoker: dropnan.v1 运行完成[0.010751s].
[2022-10-24 20:46:19.221424] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-10-24 20:46:19.747869] INFO: StockRanker预测: /y_2020 ..
[2022-10-24 20:46:20.035958] INFO: StockRanker预测: /y_2021 ..
[2022-10-24 20:46:20.467366] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[1.245925s].
[2022-10-24 20:46:20.550880] INFO: moduleinvoker: hfbacktest.v1 开始运行..
[2022-10-24 20:46:21.197595] INFO: hfbacktest: biglearning V1.4.19
[2022-10-24 20:46:21.200152] INFO: hfbacktest: bigtrader v1.9.8 2022-10-10
[2022-10-24 20:46:21.257216] INFO: moduleinvoker: cached.v2 开始运行..
[2022-10-24 20:46:21.264941] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:21.266880] INFO: moduleinvoker: cached.v2 运行完成[0.009678s].
[2022-10-24 20:46:21.384039] INFO: moduleinvoker: cached.v2 开始运行..
[2022-10-24 20:46:21.393760] INFO: moduleinvoker: 命中缓存
[2022-10-24 20:46:21.397228] INFO: moduleinvoker: cached.v2 运行完成[0.013196s].
[2022-10-24 20:46:36.315245] INFO: hfbacktest: backtest done, raw_perf_ds:DataSource(4f3fd7c769cb47c7b0465e303442c4a4T)
[2022-10-24 20:46:37.938837] INFO: moduleinvoker: hfbacktest.v1 运行完成[17.388008s].
[2022-10-24 20:46:37.941896] INFO: moduleinvoker: hftrade.v2 运行完成[17.455861s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-0df9158407c64eaf8310e646630cc156"}/bigcharts-data-end
日期2021-02-01 持仓 {} -----------
2021-02-01 =======早盘计划买入股票 ['000661.SZA', '600584.SHA', '600660.SHA', '603019.SHA', '002179.SZA']
买入000661.SZA
买入600584.SHA
买入600660.SHA
买入603019.SHA
买入002179.SZA
日期2021-02-02 持仓 {'600584.SHA': StockPosition(bkt000,600584.SHA,LONG,current_qty:200,avail_qty:200,cost_price:40.8,last_price:41.55,margin:0.0), '600660.SHA': StockPosition(bkt000,600660.SHA,LONG,current_qty:100,avail_qty:100,cost_price:58.79,last_price:59.01,margin:0.0), '603019.SHA': StockPosition(bkt000,603019.SHA,LONG,current_qty:300,avail_qty:300,cost_price:30.09,last_price:29.83,margin:0.0), '002179.SZA': StockPosition(bkt000,002179.SZA,LONG,current_qty:100,avail_qty:100,cost_price:70.01,last_price:68.62,margin:0.0)} -----------
2021-02-02 开盘卖出600584.SHA 200
2021-02-02 开盘卖出600660.SHA 100
2021-02-02 开盘卖出603019.SHA 300
2021-02-02 开盘卖出002179.SZA 100
2021-02-02 =======早盘计划买入股票 ['600584.SHA', '603882.SHA', '603019.SHA', '603806.SHA', '600516.SHA']
买入603882.SHA
买入603806.SHA
买入600516.SHA
日期2021-02-03 持仓 {'600516.SHA': StockPosition(bkt000,600516.SHA,LONG,current_qty:1300,avail_qty:1300,cost_price:7.14,last_price:7.18,margin:0.0)} -----------
2021-02-03 =======早盘计划买入股票 ['002185.SZA', '300037.SZA', '603019.SHA', '603806.SHA', '603882.SHA']
买入002185.SZA
买入300037.SZA
买入603019.SHA
买入603806.SHA
买入603882.SHA
止损成功, 止损标的600516.SHA
日期2021-02-04 持仓 {'002185.SZA': StockPosition(bkt000,002185.SZA,LONG,current_qty:600,avail_qty:600,cost_price:14.54,last_price:13.4,margin:0.0), '300037.SZA': StockPosition(bkt000,300037.SZA,LONG,current_qty:100,avail_qty:100,cost_price:87.4,last_price:82.5,margin:0.0), '603019.SHA': StockPosition(bkt000,603019.SHA,LONG,current_qty:300,avail_qty:300,cost_price:30.68,last_price:29.8,margin:0.0)} -----------
止损成功, 止损标的002185.SZA
止损成功, 止损标的300037.SZA
止损成功, 止损标的603019.SHA
2021-02-04 =======早盘计划买入股票 ['002007.SZA', '002185.SZA', '600584.SHA', '600660.SHA', '300567.SZA']
买入002007.SZA
买入600584.SHA
买入600660.SHA
买入300567.SZA
日期2021-02-05 持仓 {'002007.SZA': StockPosition(bkt000,002007.SZA,LONG,current_qty:200,avail_qty:200,cost_price:46.45,last_price:46.07,margin:0.0), '600584.SHA': StockPosition(bkt000,600584.SHA,LONG,current_qty:200,avail_qty:200,cost_price:38.8,last_price:41.39,margin:0.0), '600660.SHA': StockPosition(bkt000,600660.SHA,LONG,current_qty:100,avail_qty:100,cost_price:59.41,last_price:58.99,margin:0.0), '300567.SZA': StockPosition(bkt000,300567.SZA,LONG,current_qty:100,avail_qty:100,cost_price:56.74,last_price:54.68,margin:0.0)} -----------
止损成功, 止损标的300567.SZA
2021-02-05 =======早盘计划买入股票 ['000858.SZA', '600862.SHA', '601633.SHA', '603806.SHA', '002799.SZA']
买入000858.SZA
买入600862.SHA
买入601633.SHA
买入603806.SHA
买入002799.SZA
止盈成功, 止盈标的600584.SHA
止损成功, 止损标的600660.SHA
止盈成功, 止盈标的002007.SZA
日期2021-02-08 持仓 {'600862.SHA': StockPosition(bkt000,600862.SHA,LONG,current_qty:300,avail_qty:300,cost_price:30.69,last_price:28.65,margin:0.0), '601633.SHA': StockPosition(bkt000,601633.SHA,LONG,current_qty:200,avail_qty:200,cost_price:40.12,last_price:38.13,margin:0.0), '002799.SZA': StockPosition(bkt000,002799.SZA,LONG,current_qty:500,avail_qty:500,cost_price:18.3,last_price:19.7,margin:0.0)} -----------
止损成功, 止损标的600862.SHA
止盈成功, 止盈标的002799.SZA
2021-02-08 =======早盘计划买入股票 ['000858.SZA', '300567.SZA', '600660.SHA', '600862.SHA', '603806.SHA']
买入000858.SZA
买入300567.SZA
买入600660.SHA
买入603806.SHA
止损成功, 止损标的601633.SHA
日期2021-02-09 持仓 {'300567.SZA': StockPosition(bkt000,300567.SZA,LONG,current_qty:100,avail_qty:100,cost_price:51.7,last_price:52.96,margin:0.0), '600660.SHA': StockPosition(bkt000,600660.SHA,LONG,current_qty:100,avail_qty:100,cost_price:57.6,last_price:58.0,margin:0.0)} -----------
2021-02-09 =======早盘计划买入股票 ['002179.SZA', '300037.SZA', '300567.SZA', '600584.SHA', '603806.SHA']
买入002179.SZA
买入300037.SZA
买入300567.SZA
买入600584.SHA
买入603806.SHA
止盈成功, 止盈标的600660.SHA
2021-02-09 14:55:00 尾盘卖出300567.SZA 100
日期2021-02-10 持仓 {'300567.SZA': StockPosition(bkt000,300567.SZA,LONG,current_qty:100,avail_qty:100,cost_price:52.42,last_price:53.4,margin:0.0), '002179.SZA': StockPosition(bkt000,002179.SZA,LONG,current_qty:100,avail_qty:100,cost_price:74.57,last_price:78.13,margin:0.0), '300037.SZA': StockPosition(bkt000,300037.SZA,LONG,current_qty:100,avail_qty:100,cost_price:79.48,last_price:82.35,margin:0.0), '600584.SHA': StockPosition(bkt000,600584.SHA,LONG,current_qty:200,avail_qty:200,cost_price:40.53,last_price:41.77,margin:0.0)} -----------
止盈成功, 止盈标的300037.SZA
2021-02-10 =======早盘计划买入股票 ['002430.SZA', '300567.SZA', '600438.SHA', '600584.SHA', '603019.SHA']
买入002430.SZA
买入300567.SZA
买入600438.SHA
买入600584.SHA
买入603019.SHA
2021-02-10 14:55:00 尾盘卖出300567.SZA 100
2021-02-10 14:55:00 尾盘卖出002179.SZA 100
2021-02-10 14:55:00 尾盘卖出600584.SHA 200
日期2021-02-18 持仓 {'300567.SZA': StockPosition(bkt000,300567.SZA,LONG,current_qty:100,avail_qty:100,cost_price:52.675,last_price:52.9,margin:0.0), '600584.SHA': StockPosition(bkt000,600584.SHA,LONG,current_qty:200,avail_qty:200,cost_price:41.255,last_price:41.89,margin:0.0), '002430.SZA': StockPosition(bkt000,002430.SZA,LONG,current_qty:200,avail_qty:200,cost_price:34.39,last_price:36.08,margin:0.0), '600438.SHA': StockPosition(bkt000,600438.SHA,LONG,current_qty:100,avail_qty:100,cost_price:51.45,last_price:54.06,margin:0.0), '603019.SHA': StockPosition(bkt000,603019.SHA,LONG,current_qty:300,avail_qty:300,cost_price:29.23,last_price:29.52,margin:0.0)} -----------
止盈成功, 止盈标的002430.SZA
止盈成功, 止盈标的600438.SHA
2021-02-18 =======早盘计划买入股票 ['002601.SZA', '603707.SHA', '002185.SZA', '300037.SZA', '600438.SHA']
买入002601.SZA
买入603707.SHA
买入002185.SZA
买入300037.SZA
止盈成功, 止盈标的300567.SZA
止盈成功, 止盈标的600584.SHA
止盈成功, 止盈标的603019.SHA
日期2021-02-19 持仓 {'002601.SZA': StockPosition(bkt000,002601.SZA,LONG,current_qty:100,avail_qty:100,cost_price:50.09,last_price:48.64,margin:0.0), '603707.SHA': StockPosition(bkt000,603707.SHA,LONG,current_qty:200,avail_qty:200,cost_price:33.99,last_price:33.18,margin:0.0), '002185.SZA': StockPosition(bkt000,002185.SZA,LONG,current_qty:700,avail_qty:700,cost_price:13.3,last_price:13.27,margin:0.0), '300037.SZA': StockPosition(bkt000,300037.SZA,LONG,current_qty:100,avail_qty:100,cost_price:85.01,last_price:81.3,margin:0.0)} -----------
止损成功, 止损标的002601.SZA
止损成功, 止损标的603707.SHA
止损成功, 止损标的300037.SZA
2021-02-19 =======早盘计划买入股票 ['600887.SHA', '002185.SZA', '300037.SZA', '300699.SZA', '000661.SZA']
买入600887.SHA
买入002185.SZA
买入300699.SZA
买入000661.SZA
2021-02-19 14:55:00 尾盘卖出002185.SZA 700
日期2021-02-22 持仓 {'002185.SZA': StockPosition(bkt000,002185.SZA,LONG,current_qty:700,avail_qty:700,cost_price:13.25,last_price:13.53,margin:0.0), '600887.SHA': StockPosition(bkt000,600887.SHA,LONG,current_qty:200,avail_qty:200,cost_price:46.11,last_price:48.24,margin:0.0), '300699.SZA': StockPosition(bkt000,300699.SZA,LONG,current_qty:100,avail_qty:100,cost_price:86.8,last_price:79.73,margin:0.0)} -----------
止损成功, 止损标的300699.SZA
2021-02-22 =======早盘计划买入股票 ['002799.SZA', '002185.SZA', '600584.SHA', '600862.SHA', '601633.SHA']
买入002799.SZA
买入002185.SZA
买入600584.SHA
买入600862.SHA
买入601633.SHA
2021-02-22 14:55:00 尾盘卖出002185.SZA 700
2021-02-22 14:55:00 尾盘卖出600887.SHA 200
日期2021-02-23 持仓 {'002185.SZA': StockPosition(bkt000,002185.SZA,LONG,current_qty:700,avail_qty:700,cost_price:13.37,last_price:13.33,margin:0.0), '002799.SZA': StockPosition(bkt000,002799.SZA,LONG,current_qty:500,avail_qty:500,cost_price:19.74,last_price:19.49,margin:0.0), '600584.SHA': StockPosition(bkt000,600584.SHA,LONG,current_qty:200,avail_qty:200,cost_price:42.96,last_price:41.81,margin:0.0), '600862.SHA': StockPosition(bkt000,600862.SHA,LONG,current_qty:300,avail_qty:300,cost_price:29.5,last_price:28.64,margin:0.0), '601633.SHA': StockPosition(bkt000,601633.SHA,LONG,current_qty:200,avail_qty:200,cost_price:40.2,last_price:38.43,margin:0.0)} -----------
2021-02-23 开盘卖出002185.SZA 700
2021-02-23 开盘卖出002799.SZA 500
2021-02-23 开盘卖出600584.SHA 200
2021-02-23 开盘卖出600862.SHA 300
2021-02-23 开盘卖出601633.SHA 200
2021-02-23 =======早盘计划买入股票 ['603019.SHA', '603650.SHA', '002179.SZA', '603678.SHA', '600516.SHA']
买入603019.SHA
买入603650.SHA
买入002179.SZA
买入603678.SHA
买入600516.SHA
日期2021-02-24 持仓 {'603019.SHA': StockPosition(bkt000,603019.SHA,LONG,current_qty:300,avail_qty:300,cost_price:30.21,last_price:30.2,margin:0.0), '603650.SHA': StockPosition(bkt000,603650.SHA,LONG,current_qty:200,avail_qty:200,cost_price:36.44,last_price:36.85,margin:0.0), '002179.SZA': StockPosition(bkt000,002179.SZA,LONG,current_qty:100,avail_qty:100,cost_price:64.0,last_price:67.77,margin:0.0), '603678.SHA': StockPosition(bkt000,603678.SHA,LONG,current_qty:100,avail_qty:100,cost_price:60.06,last_price:62.46,margin:0.0), '600516.SHA': StockPosition(bkt000,600516.SHA,LONG,current_qty:1300,avail_qty:1300,cost_price:7.21,last_price:7.2,margin:0.0)} -----------
2021-02-24 开盘卖出603019.SHA 300
2021-02-24 开盘卖出603650.SHA 200
2021-02-24 开盘卖出002179.SZA 100
2021-02-24 开盘卖出603678.SHA 100
2021-02-24 开盘卖出600516.SHA 1300
2021-02-24 =======早盘计划买入股票 ['600690.SHA', '002185.SZA', '300567.SZA', '002352.SZA', '600862.SHA']
买入600690.SHA
买入002185.SZA
买入300567.SZA
买入002352.SZA
买入600862.SHA
日期2021-02-25 持仓 {'600690.SHA': StockPosition(bkt000,600690.SHA,LONG,current_qty:300,avail_qty:300,cost_price:31.39,last_price:30.0,margin:0.0), '002185.SZA': StockPosition(bkt000,002185.SZA,LONG,current_qty:700,avail_qty:700,cost_price:13.21,last_price:13.28,margin:0.0), '300567.SZA': StockPosition(bkt000,300567.SZA,LONG,current_qty:100,avail_qty:100,cost_price:52.07,last_price:53.44,margin:0.0), '600862.SHA': StockPosition(bkt000,600862.SHA,LONG,current_qty:300,avail_qty:300,cost_price:30.09,last_price:29.36,margin:0.0)} -----------
2021-02-25 开盘卖出600690.SHA 300
2021-02-25 开盘卖出002185.SZA 700
2021-02-25 开盘卖出300567.SZA 100
2021-02-25 开盘卖出600862.SHA 300
2021-02-25 =======早盘计划买入股票 ['300567.SZA', '600516.SHA', '603019.SHA', '603650.SHA', '603882.SHA']
买入600516.SHA
买入603019.SHA
买入603650.SHA
买入603882.SHA
日期2021-02-26 持仓 {'600516.SHA': StockPosition(bkt000,600516.SHA,LONG,current_qty:1300,avail_qty:1300,cost_price:7.57,last_price:8.14,margin:0.0), '603019.SHA': StockPosition(bkt000,603019.SHA,LONG,current_qty:300,avail_qty:300,cost_price:30.95,last_price:30.63,margin:0.0), '603650.SHA': StockPosition(bkt000,603650.SHA,LONG,current_qty:200,avail_qty:200,cost_price:39.16,last_price:37.66,margin:0.0)} -----------
2021-02-26 开盘卖出600516.SHA 1300
2021-02-26 开盘卖出603019.SHA 300
2021-02-26 开盘卖出603650.SHA 200
2021-02-26 =======早盘计划买入股票 ['603806.SHA', '002415.SZA', '002756.SZA', '600862.SHA', '601100.SHA']
买入603806.SHA
买入002415.SZA
买入002756.SZA
买入600862.SHA
买入601100.SHA
日期2021-03-01 持仓 {'603806.SHA': StockPosition(bkt000,603806.SHA,LONG,current_qty:100,avail_qty:100,cost_price:88.73,last_price:90.15,margin:0.0), '002415.SZA': StockPosition(bkt000,002415.SZA,LONG,current_qty:100,avail_qty:100,cost_price:55.36,last_price:55.56,margin:0.0), '002756.SZA': StockPosition(bkt000,002756.SZA,LONG,current_qty:200,avail_qty:200,cost_price:39.2,last_price:38.95,margin:0.0), '600862.SHA': StockPosition(bkt000,600862.SHA,LONG,current_qty:300,avail_qty:300,cost_price:29.39,last_price:29.61,margin:0.0), '601100.SHA': StockPosition(bkt000,601100.SHA,LONG,current_qty:100,avail_qty:100,cost_price:95.1,last_price:95.0,margin:0.0)} -----------
2021-03-01 开盘卖出603806.SHA 100
2021-03-01 开盘卖出002415.SZA 100
2021-03-01 开盘卖出002756.SZA 200
2021-03-01 开盘卖出600862.SHA 300
2021-03-01 开盘卖出601100.SHA 100
2021-03-01 =======早盘计划买入股票 ['002185.SZA', '600516.SHA', '300059.SZA', '002415.SZA', '300719.SZA']
买入002185.SZA
买入600516.SHA
买入300059.SZA
买入300719.SZA
- 收益率0.09%
- 年化收益率1.33%
- 基准收益率0.02%
- 阿尔法-0.02
- 贝塔0.03
- 夏普比率-1.08
- 胜率0.58
- 盈亏比1.11
- 收益波动率1.46%
- 信息比率-0.05
- 最大回撤0.2%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-147f1af3c4ef437c8aebe8c5f03ae8e5"}/bigcharts-data-end