{"description":"实验创建于2020/4/10","graph":{"edges":[{"to_node_id":"-526:instruments","from_node_id":"-513:data"},{"to_node_id":"-565:instruments","from_node_id":"-513:data"},{"to_node_id":"-526:features","from_node_id":"-521:data"},{"to_node_id":"-541:features","from_node_id":"-521:data"},{"to_node_id":"-548:features","from_node_id":"-521:data"},{"to_node_id":"-557:features","from_node_id":"-521:data"},{"to_node_id":"-600:features","from_node_id":"-521:data"},{"to_node_id":"-656:features","from_node_id":"-521:data"},{"to_node_id":"-548:input_data","from_node_id":"-526:data"},{"to_node_id":"-541:instruments","from_node_id":"-532:data"},{"to_node_id":"-614:instruments","from_node_id":"-532:data"},{"to_node_id":"-557:input_data","from_node_id":"-541:data"},{"to_node_id":"-576:data2","from_node_id":"-548:data"},{"to_node_id":"-593:input_data","from_node_id":"-557:data"},{"to_node_id":"-576:data1","from_node_id":"-565:data"},{"to_node_id":"-590:input_data","from_node_id":"-576:data"},{"to_node_id":"-600:training_ds","from_node_id":"-590:data"},{"to_node_id":"-656:predict_ds","from_node_id":"-593:data"},{"to_node_id":"-614:options_data","from_node_id":"-635:sorted_data"},{"to_node_id":"-635:input_ds","from_node_id":"-656:predictions"},{"to_node_id":"-656:model","from_node_id":"-671:data_1"}],"nodes":[{"node_id":"-513","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2014-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2014-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-513"}],"output_ports":[{"name":"data","node_id":"-513"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-521","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-521"}],"output_ports":[{"name":"data","node_id":"-521"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-526","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-526"},{"name":"features","node_id":"-526"}],"output_ports":[{"name":"data","node_id":"-526"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-532","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-02-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-532"}],"output_ports":[{"name":"data","node_id":"-532"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-541","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-541"},{"name":"features","node_id":"-541"}],"output_ports":[{"name":"data","node_id":"-541"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-548","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-548"},{"name":"features","node_id":"-548"}],"output_ports":[{"name":"data","node_id":"-548"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-557","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-557"},{"name":"features","node_id":"-557"}],"output_ports":[{"name":"data","node_id":"-557"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-565","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-565"}],"output_ports":[{"name":"data","node_id":"-565"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-576","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-576"},{"name":"data2","node_id":"-576"}],"output_ports":[{"name":"data","node_id":"-576"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-590","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-590"}],"output_ports":[{"name":"data","node_id":"-590"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-593","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-593"}],"output_ports":[{"name":"data","node_id":"-593"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-600","module_id":"BigQuantSpace.random_forest_regressor.random_forest_regressor-v1","parameters":[{"name":"iterations","value":10,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"max_depth","value":30,"type":"Literal","bound_global_parameter":null},{"name":"min_samples_per_leaf","value":200,"type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"workers","value":1,"type":"Literal","bound_global_parameter":null},{"name":"random_state","value":0,"type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{\"random_state\":0}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-600"},{"name":"features","node_id":"-600"},{"name":"model","node_id":"-600"},{"name":"predict_ds","node_id":"-600"}],"output_ports":[{"name":"output_model","node_id":"-600"},{"name":"predictions","node_id":"-600"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-614","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-614"},{"name":"options_data","node_id":"-614"},{"name":"history_ds","node_id":"-614"},{"name":"benchmark_ds","node_id":"-614"},{"name":"trading_calendar","node_id":"-614"}],"output_ports":[{"name":"raw_perf","node_id":"-614"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-635","module_id":"BigQuantSpace.sort.sort-v4","parameters":[{"name":"sort_by","value":"pred_label","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-635"},{"name":"sort_by_ds","node_id":"-635"}],"output_ports":[{"name":"sorted_data","node_id":"-635"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-656","module_id":"BigQuantSpace.random_forest_regressor.random_forest_regressor-v1","parameters":[{"name":"iterations","value":10,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"max_depth","value":30,"type":"Literal","bound_global_parameter":null},{"name":"min_samples_per_leaf","value":200,"type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"workers","value":1,"type":"Literal","bound_global_parameter":null},{"name":"random_state","value":0,"type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{\"random_state\":0}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-656"},{"name":"features","node_id":"-656"},{"name":"model","node_id":"-656"},{"name":"predict_ds","node_id":"-656"}],"output_ports":[{"name":"output_model","node_id":"-656"},{"name":"predictions","node_id":"-656"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-671","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n data = pd.read_pickle('/home/bigquant/work/userlib/RF_model.csv')\n model_ds = DataSource.write_pickle(data.iloc[0].to_dict())\n return Outputs(data_1=model_ds)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-671"},{"name":"input_2","node_id":"-671"},{"name":"input_3","node_id":"-671"}],"output_ports":[{"name":"data_1","node_id":"-671"},{"name":"data_2","node_id":"-671"},{"name":"data_3","node_id":"-671"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-513' Position='-44.09088897705078,28.727275848388672,200,200'/><node_position Node='-521' Position='337,26,200,200'/><node_position Node='-526' Position='101.63636779785156,129.18182373046875,200,200'/><node_position Node='-532' Position='641,23,200,200'/><node_position Node='-541' Position='579,153,200,200'/><node_position Node='-548' Position='103.0909423828125,210.5454559326172,200,200'/><node_position Node='-557' Position='581,264,200,200'/><node_position Node='-565' Position='-217.18182229995728,172.90908813476562,200,200'/><node_position Node='-576' Position='-38.999977111816406,291.3636169433594,200,200'/><node_position Node='-590' Position='-31.999977111816406,360.0909118652344,200,200'/><node_position Node='-593' Position='590,354,200,200'/><node_position Node='-600' Position='-17.0909423828125,473.4544677734375,200,200'/><node_position Node='-614' Position='518.1817626953125,646.272705078125,200,200'/><node_position Node='-635' Position='569.1818237304688,583.5454711914062,200,200'/><node_position Node='-656' Position='521.0907897949219,510.81817626953125,200,200'/><node_position Node='-671' Position='331.52618408203125,413.8926696777344,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-07-04 13:44:13.390350] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-07-04 13:44:13.412024] INFO: moduleinvoker: 命中缓存
[2022-07-04 13:44:13.414097] INFO: moduleinvoker: input_features.v1 运行完成[0.02377s].
[2022-07-04 13:44:13.420297] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-07-04 13:44:13.427835] INFO: moduleinvoker: 命中缓存
[2022-07-04 13:44:13.429728] INFO: moduleinvoker: instruments.v2 运行完成[0.009428s].
[2022-07-04 13:44:13.458026] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-07-04 13:44:13.467255] INFO: moduleinvoker: 命中缓存
[2022-07-04 13:44:13.470312] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012308s].
[2022-07-04 13:44:13.489077] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-07-04 13:44:13.497953] INFO: moduleinvoker: 命中缓存
[2022-07-04 13:44:13.500577] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.011511s].
[2022-07-04 13:44:13.521276] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-07-04 13:44:13.529082] INFO: moduleinvoker: 命中缓存
[2022-07-04 13:44:13.531521] INFO: moduleinvoker: dropnan.v1 运行完成[0.010257s].
[2022-07-04 13:44:13.546471] INFO: moduleinvoker: cached.v3 开始运行..
[2022-07-04 13:44:13.554464] INFO: moduleinvoker: 命中缓存
[2022-07-04 13:44:13.556303] INFO: moduleinvoker: cached.v3 运行完成[0.009854s].
[2022-07-04 13:44:13.682073] INFO: moduleinvoker: random_forest_regressor.v1 开始运行..
[2022-07-04 13:44:13.693142] INFO: moduleinvoker: 命中缓存
[2022-07-04 13:44:13.695628] INFO: moduleinvoker: random_forest_regressor.v1 运行完成[0.013584s].
[2022-07-04 13:44:13.706033] INFO: moduleinvoker: sort.v4 开始运行..
[2022-07-04 13:44:13.765746] INFO: moduleinvoker: 命中缓存
[2022-07-04 13:44:13.768140] INFO: moduleinvoker: sort.v4 运行完成[0.062111s].
[2022-07-04 13:44:18.022631] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-07-04 13:44:18.065663] INFO: moduleinvoker: 命中缓存
[2022-07-04 13:44:19.013808] INFO: moduleinvoker: backtest.v8 运行完成[0.991185s].
[2022-07-04 13:44:19.015555] INFO: moduleinvoker: trade.v4 运行完成[5.227557s].
- 收益率10.16%
- 年化收益率238.3%
- 基准收益率-2.81%
- 阿尔法3.17
- 贝塔0.63
- 夏普比率4.15
- 胜率0.69
- 盈亏比2.01
- 收益波动率29.71%
- 信息比率0.44
- 最大回撤4.73%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-2437f82bd20446ffb814566273b40e5e"}/bigcharts-data-end