{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-109:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-295:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-129:data"},{"to_node_id":"-129:input_data","from_node_id":"-147:data_1"},{"to_node_id":"-228:input_1","from_node_id":"-147:data_2"},{"to_node_id":"-1481:instruments","from_node_id":"-758:instrument_list"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-791:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-281:input_data","from_node_id":"-228:data_1"},{"to_node_id":"-295:input_data","from_node_id":"-228:data_2"},{"to_node_id":"-1481:options_data","from_node_id":"-109:data_1"},{"to_node_id":"-109:input_2","from_node_id":"-121:data_1"},{"to_node_id":"-228:input_2","from_node_id":"-221:data_2"},{"to_node_id":"-758:input","from_node_id":"-221:data_2"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"3","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"100","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"20","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.auto_labeler_on_datasource.auto_labeler_on_datasource-v1","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 10)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-147","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3,start_date_input,end_date_input):\n # 示例代码如下。在这里编写您的代码\n df = DataSource(\"bar1d_CN_CONBOND\").read(start_date=start_date_input, end_date=end_date_input)\n df1 = DataSource(\"market_performance_CN_CONBOND\").read(start_date=start_date_input, end_date=end_date_input)\n df2 = df.drop(['close'],axis = 1)\n df3 = pd.merge(df1,df2,on=['date','instrument'],how='inner')\n data_1 = DataSource.write_df(df3)\n data_2 = DataSource.write_df(df3)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\"start_date_input\":\"2017-06-01\",\n\"end_date_input\":\"2019-11-01\"}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-147"},{"name":"input_2","node_id":"-147"},{"name":"input_3","node_id":"-147"}],"output_ports":[{"name":"data_1","node_id":"-147"},{"name":"data_2","node_id":"-147"},{"name":"data_3","node_id":"-147"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-758","module_id":"BigQuantSpace.trade_data_generation.trade_data_generation-v1","parameters":[{"name":"category","value":"CN_STOCK","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input","node_id":"-758"}],"output_ports":[{"name":"history_data","node_id":"-758"},{"name":"instrument_list","node_id":"-758"},{"name":"calendar","node_id":"-758"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-1481","module_id":"BigQuantSpace.hftrade.hftrade-v2","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n print(context.options)\n # 加载预测数据\n context.ranker_prediction = context.options.get('data').read()['data']\n print(context.ranker_prediction)\n context.param = context.options['data'].read()[\"param\"]\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = context.param[\"stock_count\"]\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.4\n context.hold_days = context.param[\"hold_days\"]\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 交易引擎:每个单位时间开盘前调用一次。\ndef bigquant_run(context, data):\n # 盘前处理,订阅行情等\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:tick数据处理函数,每个tick执行一次\ndef bigquant_run(context, tick):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n print('当前日期data.current_dt',data.current_dt)\n try:\n print('处理data',data)\n context.ranker_prediction = context.options.get('data').read()['data']\n # 相隔几天(hold_days)进行一下换仓\n if context.trading_day_index % context.hold_days != 0:\n return \n\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n # 目前持仓\n positions = {e: p.amount * p.last_sale_price for e, p in context.portfolio.positions.items()}\n # 权重\n buy_cash_weights = context.stock_weights\n print(\"buy_cash_weights\",buy_cash_weights)\n # 今日买入股票列表\n stock_to_buy = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n # 持仓上限\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n print(\"<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\")\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = [equity for equity in context.portfolio.positions ]\n # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 需要卖出的股票\n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]\n\n # 卖出\n for stock in stock_to_sell:\n # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态\n # 如果返回真值,则可以正常下单,否则会出错\n # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式\n if data.can_trade(context.symbol(stock)):\n # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,\n # 即卖出全部股票,可参考回测文档\n if context.order_target_percent(context.symbol(stock), 0) != 0:\n print('sell_context.symbol',context.symbol(stock))\n\n # 如果当天没有买入的股票,就返回\n if len(stock_to_buy) == 0:\n return\n\n # 买入\n for i, instrument in enumerate(stock_to_buy):\n cash = context.portfolio.portfolio_value * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 500:\n if context.order_value(context.symbol(instrument), cash) !=0:\n print('fail_order_value',cash) \n except Exception as e:\n print('抛出异常',e)\n logger.exception(\"限价单下买单失败%s,%s\",context,e)\n ","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, trade):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, order):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"可转债","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"8","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"False","type":"Literal","bound_global_parameter":null},{"name":"replay_bdb","value":"True","type":"Literal","bound_global_parameter":null},{"name":"show_debug_info","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1481"},{"name":"options_data","node_id":"-1481"},{"name":"history_ds","node_id":"-1481"},{"name":"benchmark_ds","node_id":"-1481"}],"output_ports":[{"name":"raw_perf","node_id":"-1481"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-228","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"def del_input(input_1):\n df = input_1.read_df()\n df = df.drop([\"trigger_cond_item_desc\",'revise_item_desc','trigger_item_desc'],axis=1)\n df = df.dropna(axis=0, how='all', thresh=None, subset=None, inplace=False)\n print(df.columns)\n #df.sort_values(by=['date','double_low'],axis=0,ascending=True,inplace = True)\n df = df.sort_index(axis = 1)\n df = df.reset_index(drop = True)\n df = df.groupby('date').head(10)\n #print(df[['double_low','date']])\n data_1 = DataSource.write_df(df)\n return data_1\n# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n data_1 = del_input(input_1)\n data_2 = del_input(input_2)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-228"},{"name":"input_2","node_id":"-228"},{"name":"input_3","node_id":"-228"}],"output_ports":[{"name":"data_1","node_id":"-228"},{"name":"data_2","node_id":"-228"},{"name":"data_3","node_id":"-228"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-109","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n print('m11.input1',input_1)\n df = input_1.read()\n param = input_2.read()\n \n data = {\n \"param\": param,\n \"data\": df\n }\n data_1 = DataSource.write_pickle(data)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-109"},{"name":"input_2","node_id":"-109"},{"name":"input_3","node_id":"-109"}],"output_ports":[{"name":"data_1","node_id":"-109"},{"name":"data_2","node_id":"-109"},{"name":"data_3","node_id":"-109"}],"cacheable":true,"seq_num":11,"comment":"合并数据和Trade参数","comment_collapsed":true},{"node_id":"-121","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3, stock_count, hold_days):\n # 示例代码如下。在这里编写您的代码\n param = {\n \"stock_count\": stock_count,\n \"hold_days\": hold_days\n }\n data_1 = DataSource.write_pickle(param)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n \"stock_count\": 4,\n \"hold_days\": 5 \n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-121"},{"name":"input_2","node_id":"-121"},{"name":"input_3","node_id":"-121"}],"output_ports":[{"name":"data_1","node_id":"-121"},{"name":"data_2","node_id":"-121"},{"name":"data_3","node_id":"-121"}],"cacheable":true,"seq_num":14,"comment":"暴露Trade的参数","comment_collapsed":true},{"node_id":"-16105","module_id":"BigQuantSpace.hyper_parameter_search.hyper_parameter_search-v1","parameters":[{"name":"param_grid_builder","value":"def bigquant_run():\n import itertools\n param_grid = {}\n \n period_list = [5,6,120] \n \n # 在这里设置需要调优的参数备选\n feature_list = [\n '''\n double_low = close + bond_prem_ratio\n remain_size\n rank_swing_volatility_5 = nanstd((high-low)/pre_close, {0})*sqrt(200)*100\n '''.format(period) for period in period_list\n ]\n param_grid[\"m14.params\"] = [\n \"\"\"{\"stock_count\": 3, \"hold_days\": 3}\"\"\",\n \"\"\"{\"stock_count\": 4, \"hold_days\": 4}\"\"\",\n ]\n param_grid['m3.features'] = feature_list\n return param_grid","type":"Literal","bound_global_parameter":null},{"name":"scoring","value":"def bigquant_run(result):\n # 评分:收益/最大回撤\n score = result.get('m21').read_raw_perf()['sharpe'].tail(1)[0]\n return {'score': score}\n","type":"Literal","bound_global_parameter":null},{"name":"search_algorithm","value":"网格搜索","type":"Literal","bound_global_parameter":null},{"name":"search_iterations","value":10,"type":"Literal","bound_global_parameter":null},{"name":"random_state","value":"","type":"Literal","bound_global_parameter":null},{"name":"workers","value":1,"type":"Literal","bound_global_parameter":null},{"name":"worker_distributed_run","value":"False","type":"Literal","bound_global_parameter":null},{"name":"worker_silent","value":"False","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-16105"},{"name":"input_1","node_id":"-16105"},{"name":"input_2","node_id":"-16105"},{"name":"input_3","node_id":"-16105"}],"output_ports":[{"name":"result","node_id":"-16105"}],"cacheable":false,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-791","module_id":"BigQuantSpace.svr.svr-v1","parameters":[{"name":"C","value":1,"type":"Literal","bound_global_parameter":null},{"name":"kernel","value":"rbf","type":"Literal","bound_global_parameter":null},{"name":"degree","value":3,"type":"Literal","bound_global_parameter":null},{"name":"gamma","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"coef0","value":0,"type":"Literal","bound_global_parameter":null},{"name":"tol","value":0.001,"type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-791"},{"name":"features","node_id":"-791"},{"name":"model","node_id":"-791"},{"name":"predict_ds","node_id":"-791"}],"output_ports":[{"name":"output_model","node_id":"-791"},{"name":"predictions","node_id":"-791"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-221","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3,start_date_input,end_date_input):\n # 示例代码如下。在这里编写您的代码\n df = DataSource(\"bar1d_CN_CONBOND\").read(start_date=start_date_input, end_date=end_date_input)\n df1 = DataSource(\"market_performance_CN_CONBOND\").read(start_date=start_date_input, end_date=end_date_input)\n df2 = df.drop(['close'],axis = 1)\n df3 = pd.merge(df1,df2,on=['date','instrument'],how='inner')\n data_1 = DataSource.write_df(df3)\n data_2 = DataSource.write_df(df3)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\"start_date_input\":\"2021-01-05\",\n\"end_date_input\":\"2021-06-19\"}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-221"},{"name":"input_2","node_id":"-221"},{"name":"input_3","node_id":"-221"}],"output_ports":[{"name":"data_1","node_id":"-221"},{"name":"data_2","node_id":"-221"},{"name":"data_3","node_id":"-221"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='672,-151,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='558,575,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='729,717,200,200'/><node_position Node='-281' Position='369,140,200,200'/><node_position Node='-295' Position='941,147,200,200'/><node_position Node='-129' Position='-5,156,200,200'/><node_position Node='-147' Position='69,-161,200,200'/><node_position Node='-758' Position='1373,160,200,200'/><node_position Node='-1481' Position='1025,791,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='117,385,200,200'/><node_position Node='-228' Position='701,-2,200,200'/><node_position Node='-109' Position='1269,643,200,200'/><node_position Node='-121' Position='1577,522,200,200'/><node_position Node='-16105' Position='116,574,200,200'/><node_position Node='-791' Position='434,407,200,200'/><node_position Node='-221' Position='1312,-181,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-06-09 02:03:23.652638] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-06-09 02:03:23.663044] INFO: moduleinvoker: 命中缓存
[2022-06-09 02:03:23.665280] INFO: moduleinvoker: input_features.v1 运行完成[0.012652s].
[2022-06-09 02:03:23.719983] INFO: moduleinvoker: cached.v3 开始运行..
[2022-06-09 02:03:23.737398] INFO: moduleinvoker: 命中缓存
[2022-06-09 02:03:23.739872] INFO: moduleinvoker: cached.v3 运行完成[0.019903s].
[2022-06-09 02:03:23.766262] INFO: moduleinvoker: auto_labeler_on_datasource.v1 开始运行..
[2022-06-09 02:03:23.779617] INFO: moduleinvoker: 命中缓存
[2022-06-09 02:03:23.782660] INFO: moduleinvoker: auto_labeler_on_datasource.v1 运行完成[0.016399s].
[2022-06-09 02:03:23.816837] INFO: moduleinvoker: cached.v3 开始运行..
[2022-06-09 02:03:23.833683] INFO: moduleinvoker: 命中缓存
[2022-06-09 02:03:23.835928] INFO: moduleinvoker: cached.v3 运行完成[0.019114s].
[2022-06-09 02:03:23.858697] INFO: moduleinvoker: cached.v3 开始运行..
[2022-06-09 02:03:25.793639] INFO: moduleinvoker: cached.v3 运行完成[1.934939s].
[2022-06-09 02:03:25.840357] INFO: moduleinvoker: cached.v3 开始运行..
[2022-06-09 02:03:26.865931] INFO: moduleinvoker: cached.v3 运行完成[1.025567s].
[2022-06-09 02:03:26.971192] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-06-09 02:03:27.286229] INFO: derived_feature_extractor: 提取完成 double_low = close + bond_prem_ratio, 0.002s
[2022-06-09 02:03:27.309971] INFO: derived_feature_extractor: 提取完成 rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100, 0.022s
[2022-06-09 02:03:27.641434] INFO: derived_feature_extractor: /data, 5920
[2022-06-09 02:03:27.789218] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.818007s].
[2022-06-09 02:03:27.840242] INFO: moduleinvoker: join.v3 开始运行..
[2022-06-09 02:03:29.559664] INFO: join: /data, 行数=5789/5920, 耗时=0.2663s
[2022-06-09 02:03:29.639314] INFO: join: 最终行数: 5789
[2022-06-09 02:03:29.661203] INFO: moduleinvoker: join.v3 运行完成[1.820951s].
[2022-06-09 02:03:29.680432] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-06-09 02:03:30.100587] INFO: StockRanker: 特征预处理 ..
[2022-06-09 02:03:30.186308] INFO: StockRanker: prepare data: training ..
[2022-06-09 02:03:30.376648] INFO: StockRanker训练: 4d555bea 准备训练: 5789 行数
[2022-06-09 02:03:30.378530] INFO: StockRanker训练: AI模型训练,将在5789*3=1.74万数据上对模型训练进行20轮迭代训练。预计将需要1~2分钟。请耐心等待。
[2022-06-09 02:03:30.719126] INFO: StockRanker训练: 正在训练 ..
[2022-06-09 02:03:30.772107] INFO: StockRanker训练: 任务状态: Pending
[2022-06-09 02:03:40.860842] INFO: StockRanker训练: 任务状态: Running
[2022-06-09 02:04:51.300688] INFO: StockRanker训练: 00:01:03.0855830, finished iteration 1
[2022-06-09 02:04:51.302978] INFO: StockRanker训练: 00:01:03.0925699, finished iteration 2
[2022-06-09 02:04:51.305105] INFO: StockRanker训练: 00:01:03.0991693, finished iteration 3
[2022-06-09 02:04:51.308245] INFO: StockRanker训练: 00:01:03.1034466, finished iteration 4
[2022-06-09 02:04:51.310570] INFO: StockRanker训练: 00:01:03.1093820, finished iteration 5
[2022-06-09 02:04:51.313173] INFO: StockRanker训练: 00:01:03.1142383, finished iteration 6
[2022-06-09 02:04:51.315491] INFO: StockRanker训练: 00:01:03.1182250, finished iteration 7
[2022-06-09 02:04:51.317796] INFO: StockRanker训练: 00:01:03.1230293, finished iteration 8
[2022-06-09 02:04:51.320139] INFO: StockRanker训练: 00:01:03.1270318, finished iteration 9
[2022-06-09 02:04:51.322890] INFO: StockRanker训练: 00:01:03.1319969, finished iteration 10
[2022-06-09 02:04:51.325204] INFO: StockRanker训练: 00:01:03.1359423, finished iteration 11
[2022-06-09 02:04:51.327554] INFO: StockRanker训练: 00:01:03.1407969, finished iteration 12
[2022-06-09 02:04:51.329875] INFO: StockRanker训练: 00:01:03.1468267, finished iteration 13
[2022-06-09 02:04:51.332149] INFO: StockRanker训练: 00:01:03.1506804, finished iteration 14
[2022-06-09 02:04:51.333923] INFO: StockRanker训练: 00:01:03.1550199, finished iteration 15
[2022-06-09 02:04:51.335717] INFO: StockRanker训练: 00:01:03.1613675, finished iteration 16
[2022-06-09 02:04:51.337713] INFO: StockRanker训练: 00:01:03.1654143, finished iteration 17
[2022-06-09 02:04:51.340386] INFO: StockRanker训练: 00:01:03.1691966, finished iteration 18
[2022-06-09 02:04:51.342975] INFO: StockRanker训练: 00:01:03.1735812, finished iteration 19
[2022-06-09 02:04:51.345404] INFO: StockRanker训练: 00:01:03.1774650, finished iteration 20
[2022-06-09 02:04:51.347764] INFO: StockRanker训练: 任务状态: Succeeded
[2022-06-09 02:04:51.765171] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[82.084686s].
[2022-06-09 02:04:51.784634] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-06-09 02:04:51.983026] INFO: derived_feature_extractor: 提取完成 double_low = close + bond_prem_ratio, 0.001s
[2022-06-09 02:04:52.043499] INFO: derived_feature_extractor: 提取完成 rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100, 0.050s
[2022-06-09 02:04:52.183033] INFO: derived_feature_extractor: /data, 1090
[2022-06-09 02:04:52.309583] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.524934s].
[2022-06-09 02:04:52.327256] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-06-09 02:04:54.804713] INFO: StockRanker预测: /data ..
[2022-06-09 02:04:57.487162] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[5.159926s].
[2022-06-09 02:04:57.574737] INFO: moduleinvoker: cached.v3 开始运行..
[2022-06-09 02:04:57.824484] INFO: moduleinvoker: cached.v3 运行完成[0.249754s].
[2022-06-09 02:04:57.861379] INFO: moduleinvoker: trade_data_generation.v1 开始运行..
[2022-06-09 02:04:58.389214] INFO: moduleinvoker: trade_data_generation.v1 运行完成[0.527773s].
[2022-06-09 02:04:58.441336] INFO: moduleinvoker: hfbacktest.v1 开始运行..
[2022-06-09 02:04:58.449068] INFO: hfbacktest: passed-in daily_data_ds:None
[2022-06-09 02:04:58.451774] INFO: hfbacktest: passed-in minute_data_ds:None
[2022-06-09 02:04:58.454301] INFO: hfbacktest: passed-in tick_data_ds:None
[2022-06-09 02:04:58.457135] INFO: hfbacktest: passed-in each_data_ds:None
[2022-06-09 02:04:58.459244] INFO: hfbacktest: passed-in dominant_data_ds:None
[2022-06-09 02:04:58.462020] INFO: hfbacktest: passed-in benchmark_data_ds:None
[2022-06-09 02:04:58.464165] INFO: hfbacktest: passed-in trading_calendar_ds:None
[2022-06-09 02:04:58.465976] INFO: hfbacktest: biglearning V1.4.12
[2022-06-09 02:04:58.468176] INFO: hfbacktest: bigtrader v1.9.6 2022-05-31
[2022-06-09 02:04:58.505140] INFO: hfbacktest: strategy callbacks:{'on_init': , 'on_stop': , 'on_start': , 'handle_data': , 'handle_tick': , 'handle_trade': , 'handle_order': }
[2022-06-09 02:04:58.525414] INFO: hfbacktest: begin reading history data, 2021-01-05 00:00:00~2021-06-18, disable_cache:False, replay_bdb:1
[2022-06-09 02:04:58.530345] INFO: hfbacktest: reading benchmark data 2021-01-04 00:00:00~2021-06-18...
[2022-06-09 02:04:58.553731] INFO: moduleinvoker: cached.v2 开始运行..
[2022-06-09 02:04:58.870579] INFO: moduleinvoker: cached.v2 运行完成[0.316837s].
[2022-06-09 02:04:58.948305] INFO: hfbacktest: reading daily data 2019-12-30 00:00:00~2021-06-18...
[2022-06-09 02:04:58.965901] INFO: moduleinvoker: cached.v2 开始运行..
[2022-06-09 02:04:59.622066] INFO: moduleinvoker: cached.v2 运行完成[0.656166s].
[2022-06-09 02:04:59.813749] INFO: hfbacktest: cached_benchmark_ds:DataSource(f63ba34eaf314976b64f5817a4abc723T)
[2022-06-09 02:04:59.816396] INFO: hfbacktest: cached_daily_ds:DataSource(45146679a6474d93b77ce953c9a9cdb5T)
[2022-06-09 02:04:59.819948] INFO: hfbacktest: cached_minute_ds:None
[2022-06-09 02:04:59.822261] INFO: hfbacktest: cached_tick_ds:None
[2022-06-09 02:04:59.826862] INFO: hfbacktest: cached_each_ds:None
[2022-06-09 02:04:59.829109] INFO: hfbacktest: dominant_data_ds:None
[2022-06-09 02:04:59.833270] INFO: hfbacktest: read history data done, call run_backtest()
[2022-06-09 02:05:00.695860] ERROR: moduleinvoker: module name: hfbacktest, module version: v1, trackeback: OverflowError: cannot convert float infinity to integer
[2022-06-09 02:05:00.704919] ERROR: moduleinvoker: module name: hftrade, module version: v2, trackeback: OverflowError: cannot convert float infinity to integer
Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
'date', 'conversion_price', 'name_x', 'trading_code',
'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
'pure_bond_ratio', 'close', 'pre_close', 'name_y', 'open', 'high',
'low', 'deal_number', 'volume', 'amount', 'accrued_interest',
'yield_to_maturity', 'vwap', 'gross_close', 'net_close'],
dtype='object')
Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
'date', 'conversion_price', 'name_x', 'trading_code',
'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
'pure_bond_ratio', 'close', 'pre_close', 'name_y', 'open', 'high',
'low', 'deal_number', 'volume', 'amount', 'accrued_interest',
'yield_to_maturity', 'vwap', 'gross_close', 'net_close'],
dtype='object')
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-7aa45343a63249dba66034a0d74ee20d"}/bigcharts-data-end
m11.input1 DataSource(83dd1fb9684f4182820a856f3ca5fa51T)
2022-06-09 02:04:59.885616 init history datas...
2022-06-09 02:04:59.887284 init history datas done.
2022-06-09 02:04:59.898661 run_backtest() capital_base:1000000, frequency:1d, product_type:conbond, date:2021-01-05 ~ 2021-06-18
2022-06-09 02:04:59.899024 run_backtest() running...
2022-06-09 02:04:59.909265 initial contracts len=0
2022-06-09 02:04:59.909509 backtest inited.
{'data': DataSource(8213727976684dfd8d12c5149872ed59T)}
date instrument score position
0 2021-01-05 110047.HCB 0.688259 1
1 2021-01-05 110033.HCB 0.316944 2
2 2021-01-05 128042.ZCB 0.048017 3
3 2021-01-05 128129.ZCB -0.094199 4
4 2021-01-05 128040.ZCB -0.120563 5
... ... ... ... ...
1085 2021-06-18 110066.HCB -0.136418 6
1086 2021-06-18 123081.ZCB -0.199051 7
1087 2021-06-18 127005.ZCB -0.263547 8
1088 2021-06-18 123034.ZCB -0.359593 9
1089 2021-06-18 127013.ZCB -0.379047 10
[1090 rows x 4 columns]
2022-06-09 02:04:59.989247 backtest transforming 1d, bars=1...
2022-06-09 02:04:59.989551 transform start_trading_day=2021-01-05 00:00:00, simulation period=2021-01-05 ~ 2021-06-18
2022-06-09 02:04:59.989588 transform source=None, before_start_days=8
2022-06-09 02:04:59.989621 transform replay_func=<cyfunction BacktestEngine.transform.<locals>.replay_bars_dt at 0x7fc6a8d34040>
当前日期data.current_dt 2021-01-05 15:00:00
处理data BarDatas(current_dt:2021-01-05 15:00:00)
buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
当前日期data.current_dt 2021-01-06 15:00:00
处理data BarDatas(current_dt:2021-01-06 15:00:00)
当前日期data.current_dt 2021-01-07 15:00:00
处理data BarDatas(current_dt:2021-01-07 15:00:00)
当前日期data.current_dt 2021-01-08 15:00:00
处理data BarDatas(current_dt:2021-01-08 15:00:00)
当前日期data.current_dt 2021-01-11 15:00:00
处理data BarDatas(current_dt:2021-01-11 15:00:00)
当前日期data.current_dt 2021-01-12 15:00:00
处理data BarDatas(current_dt:2021-01-12 15:00:00)
buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
2022-06-09 02:05:00.340651 market open send order=OrderReq(bkt000,110065.HCB,'1','0',0,124.9499,U,0,strategy,2021-01-12 15:00:00) failed err=-108,委托数量错误
2022-06-09 02:05:00.341229 market open send order=OrderReq(bkt000,110034.HCB,'1','0',0,112.29,U,0,strategy,2021-01-12 15:00:00) failed err=-108,委托数量错误
2022-06-09 02:05:00.341647 market open send order=OrderReq(bkt000,110051.HCB,'1','0',0,123.0199,U,0,strategy,2021-01-12 15:00:00) failed err=-108,委托数量错误
2022-06-09 02:05:00.342076 market open send order=OrderReq(bkt000,110056.HCB,'1','0',0,107.3,U,0,strategy,2021-01-12 15:00:00) failed err=-108,委托数量错误
当前日期data.current_dt 2021-01-13 15:00:00
处理data BarDatas(current_dt:2021-01-13 15:00:00)
当前日期data.current_dt 2021-01-14 15:00:00
处理data BarDatas(current_dt:2021-01-14 15:00:00)
当前日期data.current_dt 2021-01-15 15:00:00
处理data BarDatas(current_dt:2021-01-15 15:00:00)
当前日期data.current_dt 2021-01-18 15:00:00
处理data BarDatas(current_dt:2021-01-18 15:00:00)
当前日期data.current_dt 2021-01-19 15:00:00
处理data BarDatas(current_dt:2021-01-19 15:00:00)
buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
当前日期data.current_dt 2021-01-20 15:00:00
处理data BarDatas(current_dt:2021-01-20 15:00:00)
当前日期data.current_dt 2021-01-21 15:00:00
处理data BarDatas(current_dt:2021-01-21 15:00:00)
当前日期data.current_dt 2021-01-22 15:00:00
处理data BarDatas(current_dt:2021-01-22 15:00:00)
当前日期data.current_dt 2021-01-25 15:00:00
处理data BarDatas(current_dt:2021-01-25 15:00:00)
当前日期data.current_dt 2021-01-26 15:00:00
处理data BarDatas(current_dt:2021-01-26 15:00:00)
buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
2022-06-09 02:05:00.693207 market open send order=OrderReq(bkt000,110047.HCB,'1','0',0,105.18,U,0,strategy,2021-01-26 15:00:00) failed err=-108,委托数量错误
2022-06-09 02:05:00.695059 strategy strategy exception:Traceback (most recent call last):
File "bigtrader/strategy/engine.py", line 714, in bigtrader2.bigtrader.strategy.engine.StrategyEngine._call_strategy_func
File "bigtrader/strategy/strategy_base.py", line 2161, in bigtrader2.bigtrader.strategy.strategy_base.StrategyBase.call_handle_market_open
File "bigtrader/finance/account_engine.py", line 2456, in bigtrader2.bigtrader.finance.account_engine.AccountEngine.send_order
File "bigtrader/finance/account_engine.py", line 2354, in bigtrader2.bigtrader.finance.account_engine.AccountEngine._check_order_cash_or_adjust
OverflowError: cannot convert float infinity to integer
---------------------------------------------------------------------------
OverflowError Traceback (most recent call last)
<ipython-input-34-d140a6185c27> in <module>
323 )
324
--> 325 m21 = M.hftrade.v2(
326 instruments=m12.instrument_list,
327 options_data=m11.data_1,
OverflowError: cannot convert float infinity to integer