{"description":"实验创建于2022/7/25","graph":{"edges":[{"to_node_id":"-133:instruments","from_node_id":"-337:data"},{"to_node_id":"-27:instruments","from_node_id":"-337:data"},{"to_node_id":"-43:data1","from_node_id":"-133:data"},{"to_node_id":"-27:features","from_node_id":"-22:data"},{"to_node_id":"-34:features","from_node_id":"-22:data"},{"to_node_id":"-100:features","from_node_id":"-22:data"},{"to_node_id":"-131:features","from_node_id":"-22:data"},{"to_node_id":"-138:features","from_node_id":"-22:data"},{"to_node_id":"-34:input_data","from_node_id":"-27:data"},{"to_node_id":"-43:data2","from_node_id":"-34:data"},{"to_node_id":"-62:input_data","from_node_id":"-43:data"},{"to_node_id":"-100:training_ds","from_node_id":"-62:data"},{"to_node_id":"-152:model","from_node_id":"-100:model"},{"to_node_id":"-131:instruments","from_node_id":"-122:data"},{"to_node_id":"-138:input_data","from_node_id":"-131:data"},{"to_node_id":"-147:input_data","from_node_id":"-138:data"},{"to_node_id":"-152:data","from_node_id":"-147:data"}],"nodes":[{"node_id":"-337","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2013-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"600004.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-337"}],"output_ports":[{"name":"data","node_id":"-337"}],"cacheable":true,"seq_num":1,"comment":"训练数据集","comment_collapsed":true},{"node_id":"-133","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-133"}],"output_ports":[{"name":"data","node_id":"-133"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-22","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-22"}],"output_ports":[{"name":"data","node_id":"-22"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-27","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-27"},{"name":"features","node_id":"-27"}],"output_ports":[{"name":"data","node_id":"-27"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-34","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-34"},{"name":"features","node_id":"-34"}],"output_ports":[{"name":"data","node_id":"-34"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-43","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-43"},{"name":"data2","node_id":"-43"}],"output_ports":[{"name":"data","node_id":"-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-62","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-62"},{"name":"features","node_id":"-62"}],"output_ports":[{"name":"data","node_id":"-62"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-100","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-100"},{"name":"features","node_id":"-100"},{"name":"test_ds","node_id":"-100"},{"name":"base_model","node_id":"-100"}],"output_ports":[{"name":"model","node_id":"-100"},{"name":"feature_gains","node_id":"-100"},{"name":"m_lazy_run","node_id":"-100"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2013-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"600004.SHA\n","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":13,"comment":"回测和模拟数据集","comment_collapsed":false},{"node_id":"-131","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-131"},{"name":"features","node_id":"-131"}],"output_ports":[{"name":"data","node_id":"-131"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-138","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-138"},{"name":"features","node_id":"-138"}],"output_ports":[{"name":"data","node_id":"-138"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-147","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-147"},{"name":"features","node_id":"-147"}],"output_ports":[{"name":"data","node_id":"-147"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-152","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"-152"},{"name":"data","node_id":"-152"}],"output_ports":[{"name":"predictions","node_id":"-152"},{"name":"m_lazy_run","node_id":"-152"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-337' Position='31,82,200,200'/><node_position Node='-133' Position='-110.0277214050293,200.89186096191406,200,200'/><node_position Node='-22' Position='505.498291015625,-30.76085662841797,200,200'/><node_position Node='-27' Position='219.2750244140625,224.35301208496094,200,200'/><node_position Node='-34' Position='223.17767333984375,309.3257141113281,200,200'/><node_position Node='-43' Position='117.59812927246094,407.0179138183594,200,200'/><node_position Node='-62' Position='125.56363677978516,522.5816650390625,200,200'/><node_position Node='-100' Position='218.64541625976562,620.8609008789062,200,200'/><node_position Node='-122' Position='635.6817321777344,167.2211685180664,200,200'/><node_position Node='-131' Position='623.2195434570312,279.46360778808594,200,200'/><node_position Node='-138' Position='620.430908203125,382.83721923828125,200,200'/><node_position Node='-147' Position='618.167121887207,478.9964599609375,200,200'/><node_position Node='-152' Position='398.29803466796875,715.3328552246094,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-07-25 17:07:14.000144] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-07-25 17:07:14.048764] INFO: moduleinvoker: 命中缓存
[2022-07-25 17:07:14.056678] INFO: moduleinvoker: instruments.v2 运行完成[0.05657s].
[2022-07-25 17:07:15.443223] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-07-25 17:07:15.453939] INFO: moduleinvoker: 命中缓存
[2022-07-25 17:07:15.458240] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.015026s].
[2022-07-25 17:07:15.691338] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-07-25 17:07:15.704301] INFO: moduleinvoker: 命中缓存
[2022-07-25 17:07:15.708506] INFO: moduleinvoker: input_features.v1 运行完成[0.017198s].
[2022-07-25 17:07:16.406887] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-07-25 17:07:16.472540] INFO: moduleinvoker: 命中缓存
[2022-07-25 17:07:16.477293] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.070413s].
[2022-07-25 17:07:17.412704] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-07-25 17:07:17.427069] INFO: moduleinvoker: 命中缓存
[2022-07-25 17:07:17.430967] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.018261s].
[2022-07-25 17:07:17.845525] INFO: moduleinvoker: join.v3 开始运行..
[2022-07-25 17:07:29.066335] INFO: join: /y_2012, 行数=0/61, 耗时=1.014686s
[2022-07-25 17:07:30.186949] INFO: join: /y_2013, 行数=238/238, 耗时=1.117723s
[2022-07-25 17:07:30.944335] INFO: join: /y_2014, 行数=240/245, 耗时=0.754653s
[2022-07-25 17:07:32.474205] INFO: join: 最终行数: 478
[2022-07-25 17:07:32.826530] INFO: moduleinvoker: join.v3 运行完成[14.980996s].
[2022-07-25 17:07:33.400101] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-07-25 17:07:37.774052] INFO: dropnan: /y_2012, 0/0
[2022-07-25 17:07:38.250131] INFO: dropnan: /y_2013, 238/238
[2022-07-25 17:07:38.885412] INFO: dropnan: /y_2014, 240/240
[2022-07-25 17:07:39.797522] INFO: dropnan: 行数: 478/478
[2022-07-25 17:07:39.803436] INFO: moduleinvoker: dropnan.v2 运行完成[6.403346s].
[2022-07-25 17:07:40.332846] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-07-25 17:07:43.641826] INFO: StockRanker: 特征预处理 ..
[2022-07-25 17:07:44.214812] INFO: StockRanker: prepare data: training ..
[2022-07-25 17:07:45.378135] INFO: StockRanker训练: 3c586710 准备训练: 478 行数
[2022-07-25 17:07:45.380682] INFO: StockRanker训练: AI模型训练,将在478*13=0.62万数据上对模型训练进行20轮迭代训练。预计将需要1~2分钟。请耐心等待。
[2022-07-25 17:07:46.019528] INFO: StockRanker训练: 正在训练 ..
[2022-07-25 17:07:46.107500] INFO: StockRanker训练: 任务状态: Pending
[2022-07-25 17:07:56.151542] INFO: StockRanker训练: 任务状态: Running
[2022-07-25 17:08:56.452666] INFO: StockRanker训练: 任务状态: Succeeded
[2022-07-25 17:08:56.479928] ERROR: moduleinvoker: module name: stock_ranker_train, module version: v6, trackeback: Exception: 模型训练失败:可能导致错误的原因是训练数据问题,请检查训练数据, err_code=1 (3c5867100bf911ed93a1ea1ef7738718)
---------------------------------------------------------------------------
Exception Traceback (most recent call last)
<ipython-input-92-2692f2205050> in <module>
89 )
90
---> 91 m11 = M.stock_ranker_train.v6(
92 training_ds=m10.data,
93 features=m3.data,
Exception: 模型训练失败:可能导致错误的原因是训练数据问题,请检查训练数据, err_code=1 (3c5867100bf911ed93a1ea1ef7738718)