{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-256:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-270:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-250:options_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-250:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-274:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"-256:model"},{"DestinationInputPortId":"-256:training_ds","SourceOutputPortId":"-270:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-274:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2014-11-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2016-12-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-250","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n context.allow_drawback = 0.1\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n today = data.current_dt.strftime(\"%Y-%m-%d\")\n print(f\"{today}的最大回撤为{context.perf_tracker.cumulative_risk_metrics.max_drawdown}\")\n if context.perf_tracker.cumulative_risk_metrics.max_drawdown > context.allow_drawback:\n return\n print(f\"{today}的收益率为{context.perf_tracker.cumulative_risk_metrics.algorithm_returns}\")\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-250"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-250","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-256","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-256"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-256"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-256"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-256"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-256","OutputType":null},{"Name":"feature_gains","NodeId":"-256","OutputType":null},{"Name":"m_lazy_run","NodeId":"-256","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-270","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-270"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-270","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-274","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-274"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-274"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-274","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><NodePosition Node='-215' Position='381,188,200,200'/><NodePosition Node='-222' Position='385,280,200,200'/><NodePosition Node='-231' Position='1078,236,200,200'/><NodePosition Node='-238' Position='1081,327,200,200'/><NodePosition Node='-250' Position='896,742,200,200'/><NodePosition Node='-256' Position='638,561,200,200'/><NodePosition Node='-270' Position='376,467,200,200'/><NodePosition Node='-274' Position='1078,418,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":false}
[2021-01-14 11:52:27.459483] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-01-14 11:52:27.466540] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.467405] INFO: moduleinvoker: instruments.v2 运行完成[0.007919s].
[2021-01-14 11:52:27.468836] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-01-14 11:52:27.473845] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.474600] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.005764s].
[2021-01-14 11:52:27.475701] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-01-14 11:52:27.479450] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.480192] INFO: moduleinvoker: input_features.v1 运行完成[0.004491s].
[2021-01-14 11:52:27.487925] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-01-14 11:52:27.492871] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.493609] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.005685s].
[2021-01-14 11:52:27.494928] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-01-14 11:52:27.510770] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.511531] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.016602s].
[2021-01-14 11:52:27.512841] INFO: moduleinvoker: join.v3 开始运行..
[2021-01-14 11:52:27.516501] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.517229] INFO: moduleinvoker: join.v3 运行完成[0.004388s].
[2021-01-14 11:52:27.518528] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-01-14 11:52:27.524151] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.524886] INFO: moduleinvoker: dropnan.v2 运行完成[0.006358s].
[2021-01-14 11:52:27.526167] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2021-01-14 11:52:27.537224] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.577323] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.051139s].
[2021-01-14 11:52:27.578653] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-01-14 11:52:27.582548] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.583263] INFO: moduleinvoker: instruments.v2 运行完成[0.004608s].
[2021-01-14 11:52:27.587394] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-01-14 11:52:27.606400] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.607224] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.019835s].
[2021-01-14 11:52:27.608606] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-01-14 11:52:27.612277] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.613011] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.004404s].
[2021-01-14 11:52:27.614335] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-01-14 11:52:27.619158] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.619900] INFO: moduleinvoker: dropnan.v2 运行完成[0.005564s].
[2021-01-14 11:52:27.621224] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2021-01-14 11:52:27.626226] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.627018] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.005794s].
[2021-01-14 11:52:27.659128] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-01-14 11:52:27.662363] INFO: backtest: biglearning backtest:V8.4.2
[2021-01-14 11:52:27.663207] INFO: backtest: product_type:stock by specified
[2021-01-14 11:52:27.740956] INFO: moduleinvoker: cached.v2 开始运行..
[2021-01-14 11:52:27.748701] INFO: moduleinvoker: 命中缓存
[2021-01-14 11:52:27.749526] INFO: moduleinvoker: cached.v2 运行完成[0.008576s].
[2021-01-14 11:52:28.163599] INFO: algo: TradingAlgorithm V1.7.0
[2021-01-14 11:52:28.472459] INFO: algo: trading transform...
[2021-01-14 11:52:28.868111] INFO: Performance: Simulated 22 trading days out of 22.
[2021-01-14 11:52:28.869630] INFO: Performance: first open: 2016-12-01 09:30:00+00:00
[2021-01-14 11:52:28.870434] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2021-01-14 11:52:32.282202] INFO: moduleinvoker: backtest.v8 运行完成[4.623074s].
[2021-01-14 11:52:32.283387] INFO: moduleinvoker: trade.v4 运行完成[4.655109s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-339a05bf3fd9466ea013189c8d80c975"}/bigcharts-data-end
2016-12-01的最大回撤为0
2016-12-01的最大回撤为None
2016-12-02的最大回撤为0.0
2016-12-02的最大回撤为[0.]
2016-12-05的最大回撤为0.0
2016-12-05的最大回撤为[0.00000000e+00 8.32973922e-05]
2016-12-06的最大回撤为-0.006839504852851269
2016-12-06的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03]
2016-12-07的最大回撤为-0.021072983086062355
2016-12-07的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02]
2016-12-08的最大回撤为-0.021072983086062355
2016-12-08的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02]
2016-12-09的最大回撤为-0.021072983086062355
2016-12-09的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02]
2016-12-12的最大回撤为-0.021072983086062355
2016-12-12的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02]
2016-12-13的最大回撤为-0.04866945124495509
2016-12-13的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02]
2016-12-14的最大回撤为-0.04866945124495509
2016-12-14的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02]
2016-12-15的最大回撤为-0.0561681776555981
2016-12-15的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02]
2016-12-16的最大回撤为-0.0561681776555981
2016-12-16的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03]
2016-12-19的最大回撤为-0.058142910834002075
2016-12-19的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03 -7.93346636e-03]
2016-12-20的最大回撤为-0.0634905243407434
2016-12-20的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03 -7.93346636e-03
-5.67773346e-03]
2016-12-21的最大回撤为-0.0634905243407434
2016-12-21的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03 -7.93346636e-03
-5.67773346e-03 1.31324786e-03]
2016-12-22的最大回撤为-0.0634905243407434
2016-12-22的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03 -7.93346636e-03
-5.67773346e-03 1.31324786e-03 9.98011873e-03]
2016-12-23的最大回撤为-0.0634905243407434
2016-12-23的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03 -7.93346636e-03
-5.67773346e-03 1.31324786e-03 9.98011873e-03 1.46922536e-02]
2016-12-26的最大回撤为-0.0634905243407434
2016-12-26的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03 -7.93346636e-03
-5.67773346e-03 1.31324786e-03 9.98011873e-03 1.46922536e-02
3.34020804e-03]
2016-12-27的最大回撤为-0.0634905243407434
2016-12-27的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03 -7.93346636e-03
-5.67773346e-03 1.31324786e-03 9.98011873e-03 1.46922536e-02
3.34020804e-03 7.54199814e-03]
2016-12-28的最大回撤为-0.0634905243407434
2016-12-28的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03 -7.93346636e-03
-5.67773346e-03 1.31324786e-03 9.98011873e-03 1.46922536e-02
3.34020804e-03 7.54199814e-03 1.42256593e-02]
2016-12-29的最大回撤为-0.0634905243407434
2016-12-29的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03 -7.93346636e-03
-5.67773346e-03 1.31324786e-03 9.98011873e-03 1.46922536e-02
3.34020804e-03 7.54199814e-03 1.42256593e-02 1.42577448e-02]
2016-12-30的最大回撤为-0.0634905243407434
2016-12-30的最大回撤为[ 0.00000000e+00 8.32973922e-05 -6.83950485e-03 -1.43314986e-02
2.13231957e-02 -1.16693060e-02 1.33547067e-02 -4.86694512e-02
1.72126227e-02 -2.46703379e-02 5.88792692e-03 -7.93346636e-03
-5.67773346e-03 1.31324786e-03 9.98011873e-03 1.46922536e-02
3.34020804e-03 7.54199814e-03 1.42256593e-02 1.42577448e-02
-2.16098797e-02]
- 收益率-4.78%
- 年化收益率-42.95%
- 基准收益率-6.44%
- 阿尔法0.26
- 贝塔1.04
- 夏普比率-2.01
- 胜率0.32
- 盈亏比1.73
- 收益波动率27.6%
- 信息比率0.06
- 最大回撤6.35%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-6fb2a30062d949989ea2777134c878e3"}/bigcharts-data-end