{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-174:input_model","from_node_id":"-169:data"},{"to_node_id":"-189:trained_model","from_node_id":"-174:data"},{"to_node_id":"-214:input_1","from_node_id":"-189:data"},{"to_node_id":"-216:features","from_node_id":"-195:data"},{"to_node_id":"-223:features","from_node_id":"-195:data"},{"to_node_id":"-9248:features","from_node_id":"-195:data"},{"to_node_id":"-9255:features","from_node_id":"-195:data"},{"to_node_id":"-216:instruments","from_node_id":"-199:data"},{"to_node_id":"-289:instruments","from_node_id":"-199:data"},{"to_node_id":"-9248:instruments","from_node_id":"-207:data"},{"to_node_id":"-281:instruments","from_node_id":"-207:data"},{"to_node_id":"-223:input_data","from_node_id":"-216:data"},{"to_node_id":"-241:data2","from_node_id":"-223:data"},{"to_node_id":"-3665:input_data","from_node_id":"-241:data"},{"to_node_id":"-241:data1","from_node_id":"-289:data"},{"to_node_id":"-5712:input_data","from_node_id":"-3665:data"},{"to_node_id":"-438:input_1","from_node_id":"-5712:data"},{"to_node_id":"-436:input_2","from_node_id":"-6710:data"},{"to_node_id":"-9255:input_data","from_node_id":"-9248:data"},{"to_node_id":"-9264:input_data","from_node_id":"-9255:data"},{"to_node_id":"-9626:input_1","from_node_id":"-9264:data"},{"to_node_id":"-9274:input_data","from_node_id":"-9270:data"},{"to_node_id":"-214:input_3","from_node_id":"-9270:data"},{"to_node_id":"-189:input_data","from_node_id":"-9274:data"},{"to_node_id":"-214:input_2","from_node_id":"-9274:data"},{"to_node_id":"-281:options_data","from_node_id":"-214:data_1"},{"to_node_id":"-6710:features","from_node_id":"-9319:data"},{"to_node_id":"-9274:features","from_node_id":"-9319:data"},{"to_node_id":"-438:input_2","from_node_id":"-9319:data"},{"to_node_id":"-9626:input_2","from_node_id":"-9319:data"},{"to_node_id":"-174:training_data","from_node_id":"-436:data_1"},{"to_node_id":"-174:validation_data","from_node_id":"-436:data_2"},{"to_node_id":"-6710:input_data","from_node_id":"-438:data"},{"to_node_id":"-9270:input_data","from_node_id":"-9626:data"},{"to_node_id":"-403:inputs","from_node_id":"-210:data"},{"to_node_id":"-169:inputs","from_node_id":"-210:data"},{"to_node_id":"-14834:inputs","from_node_id":"-218:data"},{"to_node_id":"-169:outputs","from_node_id":"-259:data"},{"to_node_id":"-14841:inputs","from_node_id":"-14806:data"},{"to_node_id":"-14806:inputs","from_node_id":"-14834:data"},{"to_node_id":"-259:inputs","from_node_id":"-14841:data"},{"to_node_id":"-408:inputs","from_node_id":"-403:data"},{"to_node_id":"-446:inputs","from_node_id":"-408:data"},{"to_node_id":"-218:inputs","from_node_id":"-446:data"}],"nodes":[{"node_id":"-169","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-169"},{"name":"outputs","node_id":"-169"}],"output_ports":[{"name":"data","node_id":"-169"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-174","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"binary_crossentropy","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"accuracy","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"2048","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"10","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-174"},{"name":"training_data","node_id":"-174"},{"name":"validation_data","node_id":"-174"}],"output_ports":[{"name":"data","node_id":"-174"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-189","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"10240","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-189"},{"name":"input_data","node_id":"-189"}],"output_ports":[{"name":"data","node_id":"-189"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-195","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nconssts=list_days_0>365 #上市天数>365天\ncondssqs=ta_ema_5_0>ta_ema_20_0 #上升趋势的票\ncondhsl=avg_turn_10>0.05 #近10天平均换手率\ncondztcs=sum(price_limit_status_0==3,10)>1 #70:统计80天内 涨停板的次数大于5\n\nta_bias(close_0, 5) #5日乖离率\nclose_0/close_5 #5日收益率\nreturn_20 #20日收益率\navg_turn_10#46:平均10天的换手率\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-195"}],"output_ports":[{"name":"data","node_id":"-195"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-199","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-12-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-01-02","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-199"}],"output_ports":[{"name":"data","node_id":"-199"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-207","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-03","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-01-4","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-207"}],"output_ports":[{"name":"data","node_id":"-207"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-216","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-216"},{"name":"features","node_id":"-216"}],"output_ports":[{"name":"data","node_id":"-216"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-223","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-223"},{"name":"features","node_id":"-223"}],"output_ports":[{"name":"data","node_id":"-223"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-241","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-241"},{"name":"data2","node_id":"-241"}],"output_ports":[{"name":"data","node_id":"-241"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-289","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:2日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-289"}],"output_ports":[{"name":"data","node_id":"-289"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-3665","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"conssts and condssqs and condhsl and condztcs","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-3665"}],"output_ports":[{"name":"data","node_id":"-3665"},{"name":"left_data","node_id":"-3665"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-5712","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-5712"},{"name":"features","node_id":"-5712"}],"output_ports":[{"name":"data","node_id":"-5712"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-6710","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"50","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"5","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6710"},{"name":"features","node_id":"-6710"}],"output_ports":[{"name":"data","node_id":"-6710"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-9248","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-9248"},{"name":"features","node_id":"-9248"}],"output_ports":[{"name":"data","node_id":"-9248"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-9255","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-9255"},{"name":"features","node_id":"-9255"}],"output_ports":[{"name":"data","node_id":"-9255"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-9264","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"conssts and condssqs and condhsl and condztcs","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-9264"}],"output_ports":[{"name":"data","node_id":"-9264"},{"name":"left_data","node_id":"-9264"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-9270","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-9270"},{"name":"features","node_id":"-9270"}],"output_ports":[{"name":"data","node_id":"-9270"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-9274","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"50","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"5","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-9274"},{"name":"features","node_id":"-9274"}],"output_ports":[{"name":"data","node_id":"-9274"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-214","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n\n test_data = input_2.read_pickle()\n pred_label = input_1.read_pickle()\n pred_result = pred_label.reshape(pred_label.shape[0]) \n dt = input_3.read_df()['date'][-1*len(pred_result):]\n pred_df = pd.Series(pred_result, index=dt)\n ds = DataSource.write_df(pred_df)\n \n return Outputs(data_1=ds)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-214"},{"name":"input_2","node_id":"-214"},{"name":"input_3","node_id":"-214"}],"output_ports":[{"name":"data_1","node_id":"-214"},{"name":"data_2","node_id":"-214"},{"name":"data_3","node_id":"-214"}],"cacheable":true,"seq_num":27,"comment":"模型预测结果输出","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n try:\n prediction = context.prediction[data.current_dt.strftime('%Y-%m-%d')]\n except KeyError as e:\n return\n \n instrument = context.instruments[0]\n sid = context.symbol(instrument)\n cur_position = context.portfolio.positions[sid].amount\n \n # 交易逻辑\n if prediction > 0.5 and cur_position == 0:\n context.order_target_percent(context.symbol(instrument), 1)\n print(data.current_dt, '买入!')\n \n elif prediction < 0.5 and cur_position > 0:\n context.order_target_percent(context.symbol(instrument), 0)\n print(data.current_dt, '卖出!')\n ","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-281"},{"name":"options_data","node_id":"-281"},{"name":"history_ds","node_id":"-281"},{"name":"benchmark_ds","node_id":"-281"},{"name":"trading_calendar","node_id":"-281"}],"output_ports":[{"name":"raw_perf","node_id":"-281"}],"cacheable":false,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-9319","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nta_bias(close_0, 5) #5日乖离率\nclose_0/close_5 #5日收益率\nreturn_20 #20日收益率\navg_turn_10#46:平均10天的换手率\npe_ttm_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-9319"}],"output_ports":[{"name":"data","node_id":"-9319"}],"cacheable":true,"seq_num":30,"comment":"","comment_collapsed":true},{"node_id":"-436","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_2.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'])\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-436"},{"name":"input_2","node_id":"-436"},{"name":"input_3","node_id":"-436"}],"output_ports":[{"name":"data_1","node_id":"-436"},{"name":"data_2","node_id":"-436"},{"name":"data_3","node_id":"-436"}],"cacheable":true,"seq_num":31,"comment":"","comment_collapsed":true},{"node_id":"-438","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-438"},{"name":"input_2","node_id":"-438"}],"output_ports":[{"name":"data","node_id":"-438"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-9626","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-9626"},{"name":"input_2","node_id":"-9626"}],"output_ports":[{"name":"data","node_id":"-9626"}],"cacheable":true,"seq_num":29,"comment":"","comment_collapsed":true},{"node_id":"-210","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"50,5","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-210"}],"output_ports":[{"name":"data","node_id":"-210"}],"cacheable":false,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-218","module_id":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","parameters":[{"name":"units","value":"32","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_activation","value":"hard_sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_initializer","value":"Orthogonal","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"unit_forget_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"dropout","value":"0","type":"Literal","bound_global_parameter":null},{"name":"recurrent_dropout","value":0,"type":"Literal","bound_global_parameter":null},{"name":"return_sequences","value":"False","type":"Literal","bound_global_parameter":null},{"name":"implementation","value":"2","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-218"}],"output_ports":[{"name":"data","node_id":"-218"}],"cacheable":false,"seq_num":35,"comment":"","comment_collapsed":true},{"node_id":"-259","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-259"}],"output_ports":[{"name":"data","node_id":"-259"}],"cacheable":false,"seq_num":36,"comment":"","comment_collapsed":true},{"node_id":"-14806","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"32","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14806"}],"output_ports":[{"name":"data","node_id":"-14806"}],"cacheable":false,"seq_num":37,"comment":"","comment_collapsed":true},{"node_id":"-14834","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.4","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14834"}],"output_ports":[{"name":"data","node_id":"-14834"}],"cacheable":false,"seq_num":38,"comment":"","comment_collapsed":true},{"node_id":"-14841","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.8","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14841"}],"output_ports":[{"name":"data","node_id":"-14841"}],"cacheable":false,"seq_num":39,"comment":"","comment_collapsed":true},{"node_id":"-403","module_id":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","parameters":[{"name":"target_shape","value":"50,5,1","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-403"}],"output_ports":[{"name":"data","node_id":"-403"}],"cacheable":false,"seq_num":40,"comment":"","comment_collapsed":true},{"node_id":"-408","module_id":"BigQuantSpace.dl_layer_conv2d.dl_layer_conv2d-v1","parameters":[{"name":"filters","value":"32","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3,5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1,1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"data_format","value":"channels_last","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":"1,1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-408"}],"output_ports":[{"name":"data","node_id":"-408"}],"cacheable":false,"seq_num":41,"comment":"","comment_collapsed":true},{"node_id":"-446","module_id":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","parameters":[{"name":"target_shape","value":"48,32","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-446"}],"output_ports":[{"name":"data","node_id":"-446"}],"cacheable":false,"seq_num":42,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-169' Position='322,893,200,200'/><node_position Node='-174' Position='427,966,200,200'/><node_position Node='-189' Position='619,1042,200,200'/><node_position Node='-195' Position='1062,3,200,200'/><node_position Node='-199' Position='675,95,200,200'/><node_position Node='-207' Position='1324,83,200,200'/><node_position Node='-216' Position='816,186,200,200'/><node_position Node='-223' Position='812,284,200,200'/><node_position Node='-241' Position='695,365,200,200'/><node_position Node='-289' Position='517,232,200,200'/><node_position Node='-3665' Position='691,459,200,200'/><node_position Node='-5712' Position='688,557,200,200'/><node_position Node='-6710' Position='678,735,200,200'/><node_position Node='-9248' Position='1325,193,200,200'/><node_position Node='-9255' Position='1331,295,200,200'/><node_position Node='-9264' Position='1319,379,200,200'/><node_position Node='-9270' Position='1280,559,200,200'/><node_position Node='-9274' Position='1208,664,200,200'/><node_position Node='-214' Position='825,1120,200,200'/><node_position Node='-281' Position='963,1211,200,200'/><node_position Node='-9319' Position='1039,332,200,200'/><node_position Node='-436' Position='649,828,200,200'/><node_position Node='-438' Position='696,649,200,200'/><node_position Node='-9626' Position='1322,472,200,200'/><node_position Node='-210' Position='192.63221740722656,126.54884624481201,200,200'/><node_position Node='-218' Position='182.63221740722656,483.548846244812,200,200'/><node_position Node='-259' Position='186.63221740722656,801.548846244812,200,200'/><node_position Node='-14806' Position='184.63221740722656,625.548846244812,200,200'/><node_position Node='-14834' Position='184.63221740722656,560.548846244812,200,200'/><node_position Node='-14841' Position='187.63221740722656,715.548846244812,200,200'/><node_position Node='-403' Position='184.63221740722656,220.548846244812,200,200'/><node_position Node='-408' Position='185.63221740722656,307.548846244812,200,200'/><node_position Node='-446' Position='183.63221740722656,391.548846244812,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-09-15 18:02:11.288077] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.001797s].
[2022-09-15 18:02:11.328674] INFO: moduleinvoker: dl_layer_reshape.v1 运行完成[0.01939s].
[2022-09-15 18:02:11.373816] INFO: moduleinvoker: dl_layer_conv2d.v1 运行完成[0.032425s].
[2022-09-15 18:02:11.397695] INFO: moduleinvoker: dl_layer_reshape.v1 运行完成[0.01504s].
[2022-09-15 18:02:11.637327] INFO: moduleinvoker: dl_layer_lstm.v1 运行完成[0.227457s].
[2022-09-15 18:02:11.658773] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.007985s].
[2022-09-15 18:02:11.697054] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.011281s].
[2022-09-15 18:02:11.715474] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.005647s].
[2022-09-15 18:02:11.743002] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.016908s].
[2022-09-15 18:02:11.824835] INFO: moduleinvoker: cached.v3 开始运行..
[2022-09-15 18:02:11.860070] INFO: moduleinvoker: cached.v3 运行完成[0.035252s].
[2022-09-15 18:02:11.862565] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.104335s].
[2022-09-15 18:02:11.903295] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-09-15 18:02:11.913601] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:11.916212] INFO: moduleinvoker: input_features.v1 运行完成[0.012926s].
[2022-09-15 18:02:11.931308] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-09-15 18:02:11.945133] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:11.948326] INFO: moduleinvoker: instruments.v2 运行完成[0.017024s].
[2022-09-15 18:02:11.996985] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-09-15 18:02:12.017505] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.021197] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.024237s].
[2022-09-15 18:02:12.032637] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-09-15 18:02:12.044600] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.047601] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.014958s].
[2022-09-15 18:02:12.060583] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-09-15 18:02:12.078080] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.080334] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.019748s].
[2022-09-15 18:02:12.102935] INFO: moduleinvoker: join.v3 开始运行..
[2022-09-15 18:02:12.110736] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.112983] INFO: moduleinvoker: join.v3 运行完成[0.010047s].
[2022-09-15 18:02:12.124017] INFO: moduleinvoker: filter.v3 开始运行..
[2022-09-15 18:02:12.134642] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.138355] INFO: moduleinvoker: filter.v3 运行完成[0.014333s].
[2022-09-15 18:02:12.156002] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-09-15 18:02:12.181264] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.183410] INFO: moduleinvoker: dropnan.v2 运行完成[0.027411s].
[2022-09-15 18:02:12.200736] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-09-15 18:02:12.227715] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.230201] INFO: moduleinvoker: instruments.v2 运行完成[0.029481s].
[2022-09-15 18:02:12.252767] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-09-15 18:02:12.286989] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.289715] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.036974s].
[2022-09-15 18:02:12.324071] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-09-15 18:02:12.333317] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.335754] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.011692s].
[2022-09-15 18:02:12.351291] INFO: moduleinvoker: filter.v3 开始运行..
[2022-09-15 18:02:12.358678] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.360921] INFO: moduleinvoker: filter.v3 运行完成[0.009627s].
[2022-09-15 18:02:12.379992] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-09-15 18:02:12.392012] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.394104] INFO: moduleinvoker: input_features.v1 运行完成[0.014131s].
[2022-09-15 18:02:12.407518] INFO: moduleinvoker: standardlize.v8 开始运行..
[2022-09-15 18:02:12.418635] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.421554] INFO: moduleinvoker: standardlize.v8 运行完成[0.014036s].
[2022-09-15 18:02:12.457298] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2022-09-15 18:02:12.468530] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.471056] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.01379s].
[2022-09-15 18:02:12.515416] INFO: moduleinvoker: cached.v3 开始运行..
[2022-09-15 18:02:12.536506] INFO: moduleinvoker: 命中缓存
[2022-09-15 18:02:12.539833] INFO: moduleinvoker: cached.v3 运行完成[0.024429s].
[2022-09-15 18:02:12.547912] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2022-09-15 18:02:12.998043] INFO: dl_model_train: 准备训练,训练样本个数:1243,迭代次数:10
[2022-09-15 18:02:13.124705] ERROR: moduleinvoker: module name: dl_model_train, module version: v1, trackeback: ValueError: in user code:
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:805 train_function *
return step_function(self, iterator)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:795 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1259 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2730 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:3417 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:788 run_step **
outputs = model.train_step(data)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:754 train_step
y_pred = self(x, training=True)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:998 __call__
input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:271 assert_input_compatibility
raise ValueError('Input ' + str(input_index) +
ValueError: Input 0 is incompatible with layer BigQuantDL: expected shape=(None, 50, 5), found shape=(None, 250)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-154-8a03ba6cc90b> in <module>
369 )
370
--> 371 m9 = M.dl_model_train.v1(
372 input_model=m8.data,
373 training_data=m31.data_1,
ValueError: in user code:
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:805 train_function *
return step_function(self, iterator)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:795 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1259 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2730 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:3417 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:788 run_step **
outputs = model.train_step(data)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:754 train_step
y_pred = self(x, training=True)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:998 __call__
input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
/usr/local/python3/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:271 assert_input_compatibility
raise ValueError('Input ' + str(input_index) +
ValueError: Input 0 is incompatible with layer BigQuantDL: expected shape=(None, 50, 5), found shape=(None, 250)