{"Description":"实验创建于2019/7/10","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"-1873:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"-1873:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-144:data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-167:instruments","SourceOutputPortId":"-158:data"},{"DestinationInputPortId":"-193:instruments","SourceOutputPortId":"-158:data"},{"DestinationInputPortId":"-213:instruments","SourceOutputPortId":"-158:data"},{"DestinationInputPortId":"-174:input_data","SourceOutputPortId":"-167:data"},{"DestinationInputPortId":"-187:data2","SourceOutputPortId":"-174:data"},{"DestinationInputPortId":"-167:features","SourceOutputPortId":"-182:data"},{"DestinationInputPortId":"-174:features","SourceOutputPortId":"-182:data"},{"DestinationInputPortId":"-3698:input_data","SourceOutputPortId":"-187:data"},{"DestinationInputPortId":"-187:data1","SourceOutputPortId":"-193:data"},{"DestinationInputPortId":"-213:options_data","SourceOutputPortId":"-3071:data"},{"DestinationInputPortId":"-144:data_2","SourceOutputPortId":"-3698:data"},{"DestinationInputPortId":"-3071:input_data","SourceOutputPortId":"-144:data_1"}],"ModuleNodes":[{"Id":"-1873","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2012-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2016-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"000001.SZA\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-1873"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1873","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"Comment":"","CommentCollapsed":true},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"20","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nclose_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,20)\nclose_0/open_0\nopen_0/mean(close_0,5)\nopen_0/mean(close_0,10)\nopen_0/mean(close_0,20)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"Comment":"","CommentCollapsed":true},{"Id":"-158","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2016-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"000001.SZA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-158"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-158","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"Comment":"","CommentCollapsed":true},{"Id":"-167","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"20","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-167"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-167"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-167","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"Comment":"","CommentCollapsed":true},{"Id":"-174","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-174"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-174"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-174","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"Comment":"","CommentCollapsed":true},{"Id":"-182","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nclose_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,20)\nclose_0/open_0\nopen_0/mean(close_0,5)\nopen_0/mean(close_0,10)\nopen_0/mean(close_0,20)\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-182"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-182","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"Comment":"","CommentCollapsed":true},{"Id":"-187","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-187"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-187"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-187","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"Comment":"","CommentCollapsed":true},{"Id":"-193","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-193"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-193","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":19,"Comment":"","CommentCollapsed":true},{"Id":"-213","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n\n context.pre_act = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续()费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n sid = symbol('000001.SZA')\n \n action = context.pre_act[context.pre_act['date'] == data.current_dt.strftime('%Y-%m-%d')]\n \n # 持仓\n cur_position = context.portfolio.positions[sid].amount \n \n if len(action['pre_action'])>0:\n\n if int(action['pre_action'])==0 and cur_position == 0:\n context.order(sid, 100)\n \n elif int(action['pre_action'])==1 and cur_position > 0:\n context.order_target_percent(sid, 0)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"100000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-213"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-213"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-213"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-213"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-213"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-213","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":2,"Comment":"","CommentCollapsed":true},{"Id":"-3071","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-3071"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3071","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"-3698","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-3698"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3698","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-144","ModuleId":"BigQuantSpace.DQN_model.DQN_model-v9","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"-144"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data_2","NodeId":"-144"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-144","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-1873' Position='-452,-11,200,200'/><NodePosition Node='-215' Position='-231,164,200,200'/><NodePosition Node='-222' Position='-230,242,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='-139,-5,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='-265.2052307128906,354,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-542,158,200,200'/><NodePosition Node='-158' Position='104,-101,200,200'/><NodePosition Node='-167' Position='325,78,200,200'/><NodePosition Node='-174' Position='332,165,200,200'/><NodePosition Node='-182' Position='417,-90,200,200'/><NodePosition Node='-187' Position='174,249,200,200'/><NodePosition Node='-193' Position='14,72,200,200'/><NodePosition Node='-213' Position='23.275100708007812,615.275146484375,200,200'/><NodePosition Node='-3071' Position='31,542,200,200'/><NodePosition Node='-3698' Position='175,349,200,200'/><NodePosition Node='-144' Position='10.752975463867188,459.2115783691406,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2019-08-30 11:18:06.170934] INFO: bigquant: instruments.v2 开始运行..
[2019-08-30 11:18:06.456847] INFO: bigquant: 命中缓存
[2019-08-30 11:18:06.459654] INFO: bigquant: instruments.v2 运行完成[0.288705s].
[2019-08-30 11:18:06.463816] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
[2019-08-30 11:18:06.517928] INFO: bigquant: 命中缓存
[2019-08-30 11:18:06.520944] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.057121s].
[2019-08-30 11:18:06.524487] INFO: bigquant: input_features.v1 开始运行..
[2019-08-30 11:18:06.597905] INFO: bigquant: 命中缓存
[2019-08-30 11:18:06.600660] INFO: bigquant: input_features.v1 运行完成[0.076172s].
[2019-08-30 11:18:06.724005] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-08-30 11:18:06.806521] INFO: bigquant: 命中缓存
[2019-08-30 11:18:06.809217] INFO: bigquant: general_feature_extractor.v7 运行完成[0.085216s].
[2019-08-30 11:18:06.817397] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-08-30 11:18:06.892479] INFO: bigquant: 命中缓存
[2019-08-30 11:18:06.895033] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.077634s].
[2019-08-30 11:18:06.898660] INFO: bigquant: join.v3 开始运行..
[2019-08-30 11:18:06.943670] INFO: bigquant: 命中缓存
[2019-08-30 11:18:06.946880] INFO: bigquant: join.v3 运行完成[0.048203s].
[2019-08-30 11:18:06.950578] INFO: bigquant: instruments.v2 开始运行..
[2019-08-30 11:18:07.005675] INFO: bigquant: 命中缓存
[2019-08-30 11:18:07.008215] INFO: bigquant: instruments.v2 运行完成[0.057612s].
[2019-08-30 11:18:07.012450] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
[2019-08-30 11:18:07.058793] INFO: bigquant: 命中缓存
[2019-08-30 11:18:07.061828] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.049367s].
[2019-08-30 11:18:07.065372] INFO: bigquant: input_features.v1 开始运行..
[2019-08-30 11:18:07.105596] INFO: bigquant: 命中缓存
[2019-08-30 11:18:07.108753] INFO: bigquant: input_features.v1 运行完成[0.043406s].
[2019-08-30 11:18:07.204450] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-08-30 11:18:07.277911] INFO: bigquant: 命中缓存
[2019-08-30 11:18:07.280705] INFO: bigquant: general_feature_extractor.v7 运行完成[0.076286s].
[2019-08-30 11:18:07.284510] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-08-30 11:18:07.334442] INFO: bigquant: 命中缓存
[2019-08-30 11:18:07.337187] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.052663s].
[2019-08-30 11:18:07.340825] INFO: bigquant: join.v3 开始运行..
[2019-08-30 11:18:07.389722] INFO: bigquant: 命中缓存
[2019-08-30 11:18:07.392047] INFO: bigquant: join.v3 运行完成[0.051211s].
[2019-08-30 11:18:07.395109] INFO: bigquant: dropnan.v1 开始运行..
[2019-08-30 11:18:07.448686] INFO: bigquant: 命中缓存
[2019-08-30 11:18:07.451032] INFO: bigquant: dropnan.v1 运行完成[0.055911s].
[2019-08-30 11:18:07.459746] INFO: bigquant: DQN_model.v9 开始运行..
[2019-08-30 11:29:52.591182] INFO: bigquant: DQN_model.v9 运行完成[705.131402s].
[2019-08-30 11:29:52.598011] INFO: bigquant: dropnan.v1 开始运行..
[2019-08-30 11:29:52.671448] INFO: dropnan: /data, 233/233
[2019-08-30 11:29:52.731526] INFO: dropnan: 行数: 233/233
[2019-08-30 11:29:52.736153] INFO: bigquant: dropnan.v1 运行完成[0.138139s].
[2019-08-30 11:29:52.778982] INFO: bigquant: backtest.v8 开始运行..
[2019-08-30 11:29:52.782852] INFO: bigquant: biglearning backtest:V8.2.9
[2019-08-30 11:29:52.785020] INFO: bigquant: product_type:stock by specified
[2019-08-30 11:29:52.996823] INFO: bigquant: cached.v2 开始运行..
[2019-08-30 11:29:53.039523] INFO: bigquant: 命中缓存
[2019-08-30 11:29:53.041626] INFO: bigquant: cached.v2 运行完成[0.044796s].
[2019-08-30 11:29:53.081966] INFO: algo: TradingAlgorithm V1.5.6
[2019-08-30 11:29:53.194131] INFO: algo: trading transform...
[2019-08-30 11:29:53.971798] INFO: Performance: Simulated 244 trading days out of 244.
[2019-08-30 11:29:53.973595] INFO: Performance: first open: 2016-01-04 09:30:00+00:00
[2019-08-30 11:29:53.975675] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2019-08-30 11:29:55.428566] INFO: bigquant: backtest.v8 运行完成[2.649577s].
episode: 0
total_reward: 181854.07299804688
episode: 1
total_reward: 284361.70330810547
episode: 2
total_reward: 286217.8956298828
episode: 3
total_reward: 286217.8956298828
episode: 4
total_reward: 286217.8956298828
- 收益率2.17%
- 年化收益率2.24%
- 基准收益率-11.28%
- 阿尔法0.07
- 贝塔0.54
- 夏普比率0.03
- 胜率1.0
- 盈亏比0.0
- 收益波动率16.0%
- 信息比率0.06
- 最大回撤10.95%
bigcharts-data-start/{"__id":"bigchart-6c7b8e52b1394778aed0f3ee00dfb9a1","__type":"tabs"}/bigcharts-data-end