复制链接
克隆策略

    {"description":"实验创建于2022/8/22","graph":{"edges":[{"to_node_id":"-618:instruments","from_node_id":"-605:data"},{"to_node_id":"-633:input_data","from_node_id":"-605:data"},{"to_node_id":"-618:features","from_node_id":"-613:data"},{"to_node_id":"-625:features","from_node_id":"-613:data"},{"to_node_id":"-625:input_data","from_node_id":"-618:data"}],"nodes":[{"node_id":"-605","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-605"}],"output_ports":[{"name":"data","node_id":"-605"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-613","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nlog(market_cap_0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-613"}],"output_ports":[{"name":"data","node_id":"-613"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-618","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-618"},{"name":"features","node_id":"-618"}],"output_ports":[{"name":"data","node_id":"-618"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-625","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-625"},{"name":"features","node_id":"-625"}],"output_ports":[{"name":"data","node_id":"-625"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-633","module_id":"BigQuantSpace.auto_labeler_on_datasource.auto_labeler_on_datasource-v1","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"False","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-633"}],"output_ports":[{"name":"data","node_id":"-633"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-605' Position='-13.42636775970459,-26.237722396850586,200,200'/><node_position Node='-613' Position='353.95806884765625,5.316764831542969,200,200'/><node_position Node='-618' Position='104.90298461914062,159.70838928222656,200,200'/><node_position Node='-625' Position='92.506591796875,307.33831787109375,200,200'/><node_position Node='-633' Position='-262.4814453125,163.08921813964844,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [14]:
    # 本代码由可视化策略环境自动生成 2022年8月22日 22:29
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    m1 = M.instruments.v2(
        start_date='2010-01-01',
        end_date='2015-01-01',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m5 = M.auto_labeler_on_datasource.v1(
        input_data=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        drop_na_label=False,
        cast_label_int=False,
        date_col='date',
        instrument_col='instrument',
        user_functions={},
        m_cached=False
    )
    
    m2 = M.input_features.v1(
        features="""
    # #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    log(market_cap_0)"""
    )
    
    m3 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m2.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m4 = M.derived_feature_extractor.v3(
        input_data=m3.data,
        features=m2.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    ---------------------------------------------------------------------------
    HDF5ExtError                              Traceback (most recent call last)
    HDF5ExtError: HDF5 error back trace
    
      File "H5F.c", line 509, in H5Fopen
        unable to open file
      File "H5Fint.c", line 1400, in H5F__open
        unable to open file
      File "H5Fint.c", line 1700, in H5F_open
        unable to read superblock
      File "H5Fsuper.c", line 411, in H5F__super_read
        file signature not found
    
    End of HDF5 error back trace
    
    Unable to open/create file '/var/app/data/bigquant/datasource/user/v3/d/45/d45ac8d8e23b4f95857806918c5f2ccaT'
    
    During handling of the above exception, another exception occurred:
    
    Exception                                 Traceback (most recent call last)
    <ipython-input-14-9c7e54dd4352> in <module>
         11 )
         12 
    ---> 13 m5 = M.auto_labeler_on_datasource.v1(
         14     input_data=m1.data,
         15     label_expr="""# #号开始的表示注释
    
    Exception: 缓存文件异常 d45ac8d8e23b4f95857806918c5f2ccaT , 请取消当前模块缓存/重新写入数据后重试! 
    In [ ]: