{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-404:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-404:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-411:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-8068:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-418:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-425:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-131:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-202:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-418:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-1918:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-224:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-411:input_data","SourceOutputPortId":"-404:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-411:data"},{"DestinationInputPortId":"-425:input_data","SourceOutputPortId":"-418:data"},{"DestinationInputPortId":"-135:input_data","SourceOutputPortId":"-425:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"-8068:model"},{"DestinationInputPortId":"-224:features","SourceOutputPortId":"-148:data"},{"DestinationInputPortId":"-139:input_ds","SourceOutputPortId":"-202:data"},{"DestinationInputPortId":"-202:data2","SourceOutputPortId":"-224:data"},{"DestinationInputPortId":"-8068:training_ds","SourceOutputPortId":"-131:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-135:data"},{"DestinationInputPortId":"-1918:options_data","SourceOutputPortId":"-139:sorted_data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-404","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-404"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-404"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-404","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"Comment":"","CommentCollapsed":true},{"Id":"-411","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-411"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-411"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-411","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"Comment":"","CommentCollapsed":true},{"Id":"-418","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-418"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-418"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-418","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"Comment":"","CommentCollapsed":true},{"Id":"-425","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-425"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-425"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-425","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"Comment":"","CommentCollapsed":true},{"Id":"-1918","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 3\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.6\n context.options['hold_days'] = 5\n\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price = data.current(order.asset, price_field)\n else:\n price = data.current(order.asset, self._price_field_buy)\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field,默认是开盘买入,收盘卖出\n context.fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='close')\n context.set_slippage(us_equities=context.fix_slippage)","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 获取当前持仓\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n \n today = data.current_dt.strftime('%Y-%m-%d')\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == today]\n \n \n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n \n \n # 2. ST股和退市股的卖出\n stock_sold = [] # 记录卖出的股票,防止多次卖出出现空单\n \n #-------------------------- START: ST和退市股卖出 --------------------- \n st_stock_list = []\n for instrument in positions.keys():\n try:\n instrument_name = ranker_prediction[ranker_prediction.instrument==instrument].name.values[0]\n # 如果股票状态变为了st或者退市 则卖出\n if 'ST' in instrument_name or '退' in instrument_name:\n if instrument in stock_sold:\n continue\n if data.can_trade(context.symbol(instrument)):\n context.order_target(context.symbol(instrument), 0)\n st_stock_list.append(instrument)\n cash_for_sell -= positions[instrument]\n except:\n continue\n if st_stock_list!=[]:\n print(today,'持仓出现st股/退市股',st_stock_list,'进行卖出处理') \n stock_sold += st_stock_list\n\n #-------------------------- END: ST和退市股卖出 --------------------- \n \n \n # 3. 生成轮仓卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in positions)])))\n for instrument in instruments:\n # 如果资金够了就不卖出了\n if cash_for_sell <= 0:\n break\n #防止多个止损条件同时满足,出现多次卖出产生空单\n if instrument in stock_sold:\n continue\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n stock_sold.append(instrument)\n\n # 4. 生成轮仓买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n # 计算今日ST/退市的股票\n st_list = list(ranker_prediction[ranker_prediction.name.str.contains('ST')|ranker_prediction.name.str.contains('退')].instrument)\n # 计算所有禁止买入的股票池\n banned_list = stock_sold+st_list\n buy_cash_weights = context.stock_weights\n buy_instruments=[k for k in list(ranker_prediction.instrument) if k not in banned_list][:len(buy_cash_weights)]\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n \n\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"def bigquant_run(context, data):\n pass","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"1000001","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-1918"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-1918"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-1918"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-1918"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-1918"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-1918","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-8068","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-8068"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-8068"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-8068"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-8068"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-8068","OutputType":null},{"Name":"feature_gains","NodeId":"-8068","OutputType":null},{"Name":"m_lazy_run","NodeId":"-8068","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"Comment":"","CommentCollapsed":true},{"Id":"-148","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nname","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-148"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-148","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"Comment":"","CommentCollapsed":true},{"Id":"-202","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-202"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-202"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-202","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":27,"Comment":"","CommentCollapsed":true},{"Id":"-224","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"instruments_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-224"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-224"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-224","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"Comment":"","CommentCollapsed":true},{"Id":"-131","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-131"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-131"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-131","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"Comment":"","CommentCollapsed":true},{"Id":"-135","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-135"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-135"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-135","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"Comment":"","CommentCollapsed":true},{"Id":"-139","ModuleId":"BigQuantSpace.sort.sort-v4","ModuleParameters":[{"Name":"sort_by","Value":"position","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"group_by","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"keep_columns","Value":"--","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ascending","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_ds","NodeId":"-139"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"sort_by_ds","NodeId":"-139"}],"OutputPortsInternal":[{"Name":"sorted_data","NodeId":"-139","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='248,98,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='79,197,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='699,-9,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='268,365,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='782,629,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='997,123,200,200'/><NodePosition Node='-404' Position='381,188,200,200'/><NodePosition Node='-411' Position='385,280,200,200'/><NodePosition Node='-418' Position='1002,254,200,200'/><NodePosition Node='-425' Position='1008,376,200,200'/><NodePosition Node='-1918' Position='1217.796630859375,903.285888671875,200,200'/><NodePosition Node='-8068' Position='591,536,200,200'/><NodePosition Node='-148' Position='1344,442,200,200'/><NodePosition Node='-202' Position='1059.8790283203125,708.1976928710938,200,200'/><NodePosition Node='-224' Position='1341,540,200,200'/><NodePosition Node='-131' Position='376,449,200,200'/><NodePosition Node='-135' Position='1011,485,200,200'/><NodePosition Node='-139' Position='1133.3226318359375,798.378173828125,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2021-12-17 14:10:41.304593] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-17 14:10:41.337953] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:10:41.340697] INFO: moduleinvoker: instruments.v2 运行完成[0.036126s].
[2021-12-17 14:10:41.357317] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-17 14:10:41.373212] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:10:41.378015] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.020692s].
[2021-12-17 14:10:41.389520] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-17 14:10:41.400792] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:10:41.403171] INFO: moduleinvoker: input_features.v1 运行完成[0.013662s].
[2021-12-17 14:10:41.446202] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-17 14:10:41.460792] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:10:41.463240] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.017058s].
[2021-12-17 14:10:41.477482] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-17 14:10:41.496220] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:10:41.499387] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.021869s].
[2021-12-17 14:10:41.521289] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-17 14:10:41.605430] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:10:41.609076] INFO: moduleinvoker: join.v3 运行完成[0.087772s].
[2021-12-17 14:10:41.632743] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-12-17 14:10:41.651571] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:10:41.653911] INFO: moduleinvoker: dropnan.v2 运行完成[0.021174s].
[2021-12-17 14:10:41.672526] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2021-12-17 14:10:47.223830] INFO: StockRanker: 特征预处理 ..
[2021-12-17 14:10:53.565452] INFO: StockRanker: prepare data: training ..
[2021-12-17 14:10:59.603332] INFO: StockRanker: sort ..
[2021-12-17 14:12:14.161656] INFO: StockRanker训练: 1023f584 准备训练: 2606084 行数
[2021-12-17 14:12:14.164323] INFO: StockRanker训练: AI模型训练,将在2606084*13=3387.91万数据上对模型训练进行20轮迭代训练。预计将需要11~21分钟。请耐心等待。
[2021-12-17 14:12:14.490545] INFO: StockRanker训练: 正在训练 ..
[2021-12-17 14:12:15.568151] INFO: StockRanker训练: 任务状态: Pending
[2021-12-17 14:12:25.621485] INFO: StockRanker训练: 任务状态: Running
[2021-12-17 14:12:56.077997] INFO: StockRanker训练: 00:00:27.0899092, finished iteration 1
[2021-12-17 14:13:16.194984] INFO: StockRanker训练: 00:00:46.4755369, finished iteration 2
[2021-12-17 14:13:36.432165] INFO: StockRanker训练: 00:01:06.8587440, finished iteration 3
[2021-12-17 14:13:57.316989] INFO: StockRanker训练: 00:01:29.3112893, finished iteration 4
[2021-12-17 14:14:17.513480] INFO: StockRanker训练: 00:01:52.7990280, finished iteration 5
[2021-12-17 14:14:48.071377] INFO: StockRanker训练: 00:02:16.9916084, finished iteration 6
[2021-12-17 14:15:08.317506] INFO: StockRanker训练: 00:02:42.8809836, finished iteration 7
[2021-12-17 14:15:39.346833] INFO: StockRanker训练: 00:03:08.1011962, finished iteration 8
[2021-12-17 14:15:59.972011] INFO: StockRanker训练: 00:03:35.0110372, finished iteration 9
[2021-12-17 14:16:30.775870] INFO: StockRanker训练: 00:04:01.2075388, finished iteration 10
[2021-12-17 14:16:50.888419] INFO: StockRanker训练: 00:04:27.1178129, finished iteration 11
[2021-12-17 14:17:21.061744] INFO: StockRanker训练: 00:04:52.6389610, finished iteration 12
[2021-12-17 14:17:41.177835] INFO: StockRanker训练: 00:05:18.2621892, finished iteration 13
[2021-12-17 14:18:11.337543] INFO: StockRanker训练: 00:05:45.3650232, finished iteration 14
[2021-12-17 14:18:41.505724] INFO: StockRanker训练: 00:06:12.6078733, finished iteration 15
[2021-12-17 14:19:01.614262] INFO: StockRanker训练: 00:06:38.7099293, finished iteration 16
[2021-12-17 14:19:31.772566] INFO: StockRanker训练: 00:07:06.0602990, finished iteration 17
[2021-12-17 14:20:01.963551] INFO: StockRanker训练: 00:07:33.8005546, finished iteration 18
[2021-12-17 14:20:32.131943] INFO: StockRanker训练: 00:08:01.6872456, finished iteration 19
[2021-12-17 14:20:52.494573] INFO: StockRanker训练: 00:08:29.4329581, finished iteration 20
[2021-12-17 14:21:02.627157] INFO: StockRanker训练: 任务状态: Succeeded
[2021-12-17 14:21:03.114649] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[621.442111s].
[2021-12-17 14:21:03.128835] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-17 14:21:03.139742] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:21:03.142848] INFO: moduleinvoker: instruments.v2 运行完成[0.014019s].
[2021-12-17 14:21:03.193796] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-17 14:21:03.209722] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:21:03.213804] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.020015s].
[2021-12-17 14:21:03.234511] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-17 14:21:03.249969] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:21:03.251650] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.017152s].
[2021-12-17 14:21:03.305685] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-12-17 14:21:05.478388] INFO: dropnan: /y_2015, 565146/569698
[2021-12-17 14:21:06.849861] INFO: dropnan: /y_2016, 636912/641546
[2021-12-17 14:21:06.977602] INFO: dropnan: 行数: 1202058/1211244
[2021-12-17 14:21:06.988127] INFO: moduleinvoker: dropnan.v2 运行完成[3.682425s].
[2021-12-17 14:21:07.016140] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2021-12-17 14:21:07.693752] INFO: StockRanker预测: /y_2015 ..
[2021-12-17 14:21:09.569044] INFO: StockRanker预测: /y_2016 ..
[2021-12-17 14:21:13.833813] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[6.817657s].
[2021-12-17 14:21:13.841755] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-17 14:21:13.861185] INFO: moduleinvoker: 命中缓存
[2021-12-17 14:21:13.864161] INFO: moduleinvoker: input_features.v1 运行完成[0.022389s].
[2021-12-17 14:21:13.874937] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2021-12-17 14:21:16.463789] INFO: moduleinvoker: use_datasource.v1 运行完成[2.588847s].
[2021-12-17 14:21:16.495855] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-17 14:21:27.355931] INFO: join: /data, 行数=1202058/1369323, 耗时=7.887564s
[2021-12-17 14:21:27.483472] INFO: join: 最终行数: 1202058
[2021-12-17 14:21:27.511493] INFO: moduleinvoker: join.v3 运行完成[11.015615s].
[2021-12-17 14:21:27.526048] INFO: moduleinvoker: sort.v4 开始运行..
[2021-12-17 14:21:31.300050] INFO: moduleinvoker: sort.v4 运行完成[3.773984s].
[2021-12-17 14:21:34.155546] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-12-17 14:21:34.161895] INFO: backtest: biglearning backtest:V8.6.0
[2021-12-17 14:21:34.163488] INFO: backtest: product_type:stock by specified
[2021-12-17 14:21:34.439146] INFO: moduleinvoker: cached.v2 开始运行..
[2021-12-17 14:21:44.259480] INFO: backtest: 读取股票行情完成:2212017
[2021-12-17 14:21:49.608404] INFO: moduleinvoker: cached.v2 运行完成[15.169222s].
[2021-12-17 14:21:52.361947] INFO: algo: TradingAlgorithm V1.8.6
[2021-12-17 14:21:54.132796] INFO: algo: trading transform...
[2021-12-17 14:22:24.164817] INFO: Performance: Simulated 488 trading days out of 488.
[2021-12-17 14:22:24.166585] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2021-12-17 14:22:24.168046] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2021-12-17 14:22:35.021096] INFO: moduleinvoker: backtest.v8 运行完成[60.865549s].
[2021-12-17 14:22:35.024119] INFO: moduleinvoker: trade.v4 运行完成[63.699518s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-a6b2e8c1533742c485bb627fd104e620"}/bigcharts-data-end
- 收益率256.8%
- 年化收益率92.87%
- 基准收益率-6.33%
- 阿尔法1.1
- 贝塔1.0
- 夏普比率1.61
- 胜率0.61
- 盈亏比0.91
- 收益波动率45.47%
- 信息比率0.14
- 最大回撤51.2%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-06e45f58b9f34c6691a3048ca393cd1b"}/bigcharts-data-end