复制链接
克隆策略

    {"Description":"实验创建于2017/11/15","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-281:options_data","SourceOutputPortId":"-214:data_1"},{"DestinationInputPortId":"-316:inputs","SourceOutputPortId":"-210:data"},{"DestinationInputPortId":"-218:inputs","SourceOutputPortId":"-210:data"},{"DestinationInputPortId":"-1474:inputs","SourceOutputPortId":"-218:data"},{"DestinationInputPortId":"-320:input_model","SourceOutputPortId":"-316:data"},{"DestinationInputPortId":"-332:trained_model","SourceOutputPortId":"-320:data"},{"DestinationInputPortId":"-214:input_1","SourceOutputPortId":"-332:data"},{"DestinationInputPortId":"-692:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-1126:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-1134:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-1488:inputs","SourceOutputPortId":"-259:data"},{"DestinationInputPortId":"-2290:data1","SourceOutputPortId":"-1966:data_1"},{"DestinationInputPortId":"-2296:input_data","SourceOutputPortId":"-2290:data"},{"DestinationInputPortId":"-2300:input_data","SourceOutputPortId":"-2296:data"},{"DestinationInputPortId":"-2306:input_data","SourceOutputPortId":"-2296:data"},{"DestinationInputPortId":"-1126:input_data","SourceOutputPortId":"-2300:data"},{"DestinationInputPortId":"-214:input_3","SourceOutputPortId":"-2306:data"},{"DestinationInputPortId":"-1134:input_data","SourceOutputPortId":"-2306:data"},{"DestinationInputPortId":"-1966:input_1","SourceOutputPortId":"-616:data_1"},{"DestinationInputPortId":"-692:input_data","SourceOutputPortId":"-616:data_1"},{"DestinationInputPortId":"-616:input_1","SourceOutputPortId":"-620:data"},{"DestinationInputPortId":"-281:instruments","SourceOutputPortId":"-620:data"},{"DestinationInputPortId":"-2290:data2","SourceOutputPortId":"-692:data"},{"DestinationInputPortId":"-1481:inputs","SourceOutputPortId":"-1403:data"},{"DestinationInputPortId":"-1403:inputs","SourceOutputPortId":"-1474:data"},{"DestinationInputPortId":"-259:inputs","SourceOutputPortId":"-1481:data"},{"DestinationInputPortId":"-316:outputs","SourceOutputPortId":"-1488:data"},{"DestinationInputPortId":"-320:training_data","SourceOutputPortId":"-1126:data"},{"DestinationInputPortId":"-332:input_data","SourceOutputPortId":"-1134:data"},{"DestinationInputPortId":"-214:input_2","SourceOutputPortId":"-1134:data"}],"ModuleNodes":[{"Id":"-214","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n input_series = input_1\n input_df = input_2\n test_data = input_df.read_pickle()\n pred_label = input_series.read_pickle()\n \n pred_result = pred_label.reshape(pred_label.shape[0]) \n dt = input_3.read_df()['date'][-1*len(pred_result):]\n pred_df = pd.Series(pred_result, index=dt)\n ds = DataSource.write_df(pred_df)\n \n pred_label = np.where(pred_label>0.5,1,0)\n labels = test_data['y']\n print('准确率%s'%(np.mean(pred_label==labels)))\n \n return Outputs(data_1=ds)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-214"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-214"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-214"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-214","OutputType":null},{"Name":"data_2","NodeId":"-214","OutputType":null},{"Name":"data_3","NodeId":"-214","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"模型预测结果输出","CommentCollapsed":false},{"Id":"-210","ModuleId":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","ModuleParameters":[{"Name":"shape","Value":"100,1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dtype","Value":"float32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sparse","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-210"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-210","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"-218","ModuleId":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","ModuleParameters":[{"Name":"units","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_activation","Value":"hard_sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_initializer","Value":"Orthogonal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Ones","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"unit_forget_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dropout","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_dropout","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"return_sequences","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"implementation","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-218"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-218","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-316","ModuleId":"BigQuantSpace.dl_model_init.dl_model_init-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-316"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"outputs","NodeId":"-316"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-316","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":5,"Comment":"","CommentCollapsed":true},{"Id":"-320","ModuleId":"BigQuantSpace.dl_model_train.dl_model_train-v1","ModuleParameters":[{"Name":"optimizer","Value":"SGD","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_optimizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"loss","Value":"binary_crossentropy","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_loss","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"metrics","Value":"accuracy","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_size","Value":"2048","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"epochs","Value":"10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"1:输出进度条记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_model","NodeId":"-320"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_data","NodeId":"-320"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"validation_data","NodeId":"-320"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-320","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"Comment":"","CommentCollapsed":true},{"Id":"-332","ModuleId":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","ModuleParameters":[{"Name":"batch_size","Value":"10240","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":"2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"2:每个epoch输出一行记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trained_model","NodeId":"-332"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-332"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-332","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"Comment":"","CommentCollapsed":true},{"Id":"-2295","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"shift(close,1)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-2295"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2295","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"Comment":"","CommentCollapsed":true},{"Id":"-259","ModuleId":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","ModuleParameters":[{"Name":"units","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-259"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-259","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":9,"Comment":"","CommentCollapsed":true},{"Id":"-1966","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n input_ds = input_1\n df = input_ds.read_df()\n df['return'] = (df.close.shift(-10)/df.close - 1)\n df['label'] = np.where(df['return'] > 0, 1, 0)\n ds = DataSource.write_df(df)\n return Outputs(data_1=ds)\n\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-1966"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-1966"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-1966"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-1966","OutputType":null},{"Name":"data_2","NodeId":"-1966","OutputType":null},{"Name":"data_3","NodeId":"-1966","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"Comment":"数据标注","CommentCollapsed":false},{"Id":"-2290","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-2290"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-2290"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2290","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"Comment":"标注特征连接","CommentCollapsed":false},{"Id":"-2296","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-2296"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2296","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"Comment":"去掉为nan的数据","CommentCollapsed":true},{"Id":"-2300","ModuleId":"BigQuantSpace.filter.filter-v3","ModuleParameters":[{"Name":"expr","Value":"date<'2017-03-01'","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-2300"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2300","OutputType":null},{"Name":"left_data","NodeId":"-2300","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":19,"Comment":"训练数据","CommentCollapsed":false},{"Id":"-2306","ModuleId":"BigQuantSpace.filter.filter-v3","ModuleParameters":[{"Name":"expr","Value":"date>'2017-03-01'","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-2306"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2306","OutputType":null},{"Name":"left_data","NodeId":"-2306","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"Comment":"测试数据","CommentCollapsed":false},{"Id":"-616","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n fields = ['open','high','low','close','volume']\n input_1_df = input_1.read_pickle()\n ins = input_1_df['instruments']\n start_date = input_1_df['start_date']\n end_date = input_1_df['end_date']\n df = D.history_data(ins, start_date, end_date, fields) \n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-616"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-616"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-616"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-616","OutputType":null},{"Name":"data_2","NodeId":"-616","OutputType":null},{"Name":"data_3","NodeId":"-616","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":23,"Comment":"获取基本数据","CommentCollapsed":false},{"Id":"-620","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-10-30","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"600009.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-620"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-620","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":24,"Comment":"证券标的及起始截止时间","CommentCollapsed":false},{"Id":"-692","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-692"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-692"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-692","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":26,"Comment":"计算需要使用的特征","CommentCollapsed":false},{"Id":"-281","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"2017-04-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n try:\n prediction = context.prediction[data.current_dt.strftime('%Y-%m-%d')]\n except KeyError as e:\n return\n \n instrument = context.instruments[0]\n sid = context.symbol(instrument)\n cur_position = context.portfolio.positions[sid].amount\n \n # 交易逻辑\n if prediction > 0.5 and cur_position == 0:\n context.order_target_percent(context.symbol(instrument), 1)\n print(data.current_dt, '买入!')\n \n elif prediction < 0.5 and cur_position > 0:\n context.order_target_percent(context.symbol(instrument), 0)\n print(data.current_dt, '卖出!')\n ","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-281"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-281","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true},{"Id":"-1403","ModuleId":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","ModuleParameters":[{"Name":"units","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_activation","Value":"hard_sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_initializer","Value":"Orthogonal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"unit_forget_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dropout","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_dropout","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"return_sequences","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"implementation","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-1403"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1403","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":25,"Comment":"","CommentCollapsed":true},{"Id":"-1474","ModuleId":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","ModuleParameters":[{"Name":"rate","Value":"0.9","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"noise_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"seed","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-1474"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1474","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":10,"Comment":"","CommentCollapsed":true},{"Id":"-1481","ModuleId":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","ModuleParameters":[{"Name":"rate","Value":"0.9","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"noise_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"seed","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-1481"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1481","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":11,"Comment":"","CommentCollapsed":true},{"Id":"-1488","ModuleId":"BigQuantSpace.dl_layer_activation.dl_layer_activation-v1","ModuleParameters":[{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-1488"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1488","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":12,"Comment":"","CommentCollapsed":true},{"Id":"-1126","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":5,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1126"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1126"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1126","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"Comment":"","CommentCollapsed":true},{"Id":"-1134","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":5,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1134"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1134"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1134","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-214' Position='791,764,200,200'/><NodePosition Node='-210' Position='-20,-272,200,200'/><NodePosition Node='-218' Position='289,-115,200,200'/><NodePosition Node='-316' Position='89,485,200,200'/><NodePosition Node='-320' Position='334,582,200,200'/><NodePosition Node='-332' Position='550,695,200,200'/><NodePosition Node='-2295' Position='1054,-338,200,200'/><NodePosition Node='-259' Position='272,300,200,200'/><NodePosition Node='-1966' Position='715,-224,200,200'/><NodePosition Node='-2290' Position='710,-72,200,200'/><NodePosition Node='-2296' Position='710,52,200,200'/><NodePosition Node='-2300' Position='707,211,200,200'/><NodePosition Node='-2306' Position='1057,212,200,200'/><NodePosition Node='-616' Position='717,-346,200,200'/><NodePosition Node='-620' Position='423,-457,200,200'/><NodePosition Node='-692' Position='1045,-226,200,200'/><NodePosition Node='-281' Position='976,893,200,200'/><NodePosition Node='-1403' Position='257,143,200,200'/><NodePosition Node='-1474' Position='259,13,200,200'/><NodePosition Node='-1481' Position='270,227,200,200'/><NodePosition Node='-1488' Position='256,400,200,200'/><NodePosition Node='-1126' Position='710,375,200,200'/><NodePosition Node='-1134' Position='1060,372,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
    In [6]:
    # 本代码由可视化策略环境自动生成 2019年4月3日 13:48
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m23_run_bigquant_run(input_1, input_2, input_3):
        fields = ['open','high','low','close','volume']
        input_1_df = input_1.read_pickle()
        ins = input_1_df['instruments']
        start_date = input_1_df['start_date']
        end_date = input_1_df['end_date']
        df = D.history_data(ins, start_date, end_date, fields)     
        data_1 = DataSource.write_df(df)
        return Outputs(data_1=data_1, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m23_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m16_run_bigquant_run(input_1, input_2, input_3):
        input_ds = input_1
        df = input_ds.read_df()
        df['return'] = (df.close.shift(-10)/df.close - 1)
        df['label'] = np.where(df['return'] > 0, 1, 0)
        ds = DataSource.write_df(df)
        return Outputs(data_1=ds)
    
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m16_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m2_run_bigquant_run(input_1, input_2, input_3):
        input_series = input_1
        input_df = input_2
        test_data = input_df.read_pickle()
        pred_label = input_series.read_pickle()
      
        pred_result = pred_label.reshape(pred_label.shape[0]) 
        dt = input_3.read_df()['date'][-1*len(pred_result):]
        pred_df = pd.Series(pred_result, index=dt)
        ds = DataSource.write_df(pred_df)
        
        pred_label = np.where(pred_label>0.5,1,0)
        labels = test_data['y']
        print('准确率%s'%(np.mean(pred_label==labels)))
        
        return Outputs(data_1=ds)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m2_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m1_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        try:
            prediction = context.prediction[data.current_dt.strftime('%Y-%m-%d')]
        except KeyError as e:
            return
        
        instrument = context.instruments[0]
        sid = context.symbol(instrument)
        cur_position = context.portfolio.positions[sid].amount
        
        # 交易逻辑
        if prediction > 0.5 and cur_position == 0:
            context.order_target_percent(context.symbol(instrument), 1)
            print(data.current_dt, '买入!')
            
        elif prediction < 0.5 and cur_position > 0:
            context.order_target_percent(context.symbol(instrument), 0)
            print(data.current_dt, '卖出!')
        
    # 回测引擎:准备数据,只执行一次
    def m1_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:初始化函数,只执行一次
    def m1_initialize_bigquant_run(context):
        # 加载预测数据
        context.prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m1_before_trading_start_bigquant_run(context, data):
        pass
    
    
    m3 = M.dl_layer_input.v1(
        shape='100,1',
        batch_shape='',
        dtype='float32',
        sparse=False,
        name=''
    )
    
    m4 = M.dl_layer_lstm.v1(
        inputs=m3.data,
        units=100,
        activation='tanh',
        recurrent_activation='hard_sigmoid',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        recurrent_initializer='Orthogonal',
        bias_initializer='Ones',
        unit_forget_bias=True,
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        recurrent_regularizer='None',
        recurrent_regularizer_l1=0,
        recurrent_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        recurrent_constraint='None',
        bias_constraint='None',
        dropout=0,
        recurrent_dropout=0,
        return_sequences=True,
        implementation='0',
        name=''
    )
    
    m10 = M.dl_layer_dropout.v1(
        inputs=m4.data,
        rate=0.9,
        noise_shape='',
        name=''
    )
    
    m25 = M.dl_layer_lstm.v1(
        inputs=m10.data,
        units=100,
        activation='tanh',
        recurrent_activation='hard_sigmoid',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        recurrent_initializer='Orthogonal',
        bias_initializer='Zeros',
        unit_forget_bias=True,
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        recurrent_regularizer='None',
        recurrent_regularizer_l1=0,
        recurrent_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        recurrent_constraint='None',
        bias_constraint='None',
        dropout=0,
        recurrent_dropout=0,
        return_sequences=False,
        implementation='0',
        name=''
    )
    
    m11 = M.dl_layer_dropout.v1(
        inputs=m25.data,
        rate=0.9,
        noise_shape='',
        name=''
    )
    
    m9 = M.dl_layer_dense.v1(
        inputs=m11.data,
        units=1,
        activation='sigmoid',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m12 = M.dl_layer_activation.v1(
        inputs=m9.data,
        activation='tanh',
        name=''
    )
    
    m5 = M.dl_model_init.v1(
        inputs=m3.data,
        outputs=m12.data
    )
    
    m8 = M.input_features.v1(
        features='shift(close,1)'
    )
    
    m24 = M.instruments.v2(
        start_date='2015-01-01',
        end_date='2018-10-30',
        market='CN_STOCK_A',
        instrument_list='600009.SHA',
        max_count=0
    )
    
    m23 = M.cached.v3(
        input_1=m24.data,
        run=m23_run_bigquant_run,
        post_run=m23_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m16 = M.cached.v3(
        input_1=m23.data_1,
        run=m16_run_bigquant_run,
        post_run=m16_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m26 = M.derived_feature_extractor.v3(
        input_data=m23.data_1,
        features=m8.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m17 = M.join.v3(
        data1=m16.data_1,
        data2=m26.data,
        on='date',
        how='inner',
        sort=True
    )
    
    m18 = M.dropnan.v1(
        input_data=m17.data
    )
    
    m19 = M.filter.v3(
        input_data=m18.data,
        expr='date<\'2017-03-01\'',
        output_left_data=False
    )
    
    m13 = M.dl_convert_to_bin.v2(
        input_data=m19.data,
        features=m8.data,
        window_size=100,
        feature_clip=5,
        flatten=True,
        window_along_col='instrument'
    )
    
    m6 = M.dl_model_train.v1(
        input_model=m5.data,
        training_data=m13.data,
        optimizer='SGD',
        loss='binary_crossentropy',
        metrics='accuracy',
        batch_size=2048,
        epochs=10,
        n_gpus=1,
        verbose='1:输出进度条记录'
    )
    
    m20 = M.filter.v3(
        input_data=m18.data,
        expr='date>\'2017-03-01\'',
        output_left_data=False
    )
    
    m14 = M.dl_convert_to_bin.v2(
        input_data=m20.data,
        features=m8.data,
        window_size=100,
        feature_clip=5,
        flatten=True,
        window_along_col='instrument'
    )
    
    m7 = M.dl_model_predict.v1(
        trained_model=m6.data,
        input_data=m14.data,
        batch_size=10240,
        n_gpus=2,
        verbose='2:每个epoch输出一行记录'
    )
    
    m2 = M.cached.v3(
        input_1=m7.data,
        input_2=m14.data,
        input_3=m20.data,
        run=m2_run_bigquant_run,
        post_run=m2_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m1 = M.trade.v4(
        instruments=m24.data,
        options_data=m2.data_1,
        start_date='2017-04-01',
        end_date='',
        handle_data=m1_handle_data_bigquant_run,
        prepare=m1_prepare_bigquant_run,
        initialize=m1_initialize_bigquant_run,
        before_trading_start=m1_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark=''
    )
    
    ---------------------------------------------------------------------------
    KeyError                                  Traceback (most recent call last)
    <ipython-input-6-eeb54a6a3662> in <module>()
         97     feature_clip=5,
         98     flatten=True,
    ---> 99     window_along_col='instrument'
        100 )
    
    KeyError: 'instrument'