克隆策略

    {"description":"实验创建于2019/7/10","graph":{"edges":[{"to_node_id":"-215:instruments","from_node_id":"-1873:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"-1873:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-2786:data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-167:instruments","from_node_id":"-158:data"},{"to_node_id":"-193:instruments","from_node_id":"-158:data"},{"to_node_id":"-213:instruments","from_node_id":"-158:data"},{"to_node_id":"-174:input_data","from_node_id":"-167:data"},{"to_node_id":"-187:data2","from_node_id":"-174:data"},{"to_node_id":"-167:features","from_node_id":"-182:data"},{"to_node_id":"-174:features","from_node_id":"-182:data"},{"to_node_id":"-3698:input_data","from_node_id":"-187:data"},{"to_node_id":"-187:data1","from_node_id":"-193:data"},{"to_node_id":"-213:options_data","from_node_id":"-3071:data"},{"to_node_id":"-2786:data_2","from_node_id":"-3698:data"},{"to_node_id":"-3071:input_data","from_node_id":"-2786:data_1"}],"nodes":[{"node_id":"-1873","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2012-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"000001.SZA\n","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-1873"}],"output_ports":[{"name":"data","node_id":"-1873"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"20","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nclose_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,20)\nclose_0/open_0\nopen_0/mean(close_0,5)\nopen_0/mean(close_0,10)\nopen_0/mean(close_0,20)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-158","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"000001.SZA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-158"}],"output_ports":[{"name":"data","node_id":"-158"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-167","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"20","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-167"},{"name":"features","node_id":"-167"}],"output_ports":[{"name":"data","node_id":"-167"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-174","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-174"},{"name":"features","node_id":"-174"}],"output_ports":[{"name":"data","node_id":"-174"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-182","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nclose_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,20)\nclose_0/open_0\nopen_0/mean(close_0,5)\nopen_0/mean(close_0,10)\nopen_0/mean(close_0,20)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-182"}],"output_ports":[{"name":"data","node_id":"-182"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-187","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-187"},{"name":"data2","node_id":"-187"}],"output_ports":[{"name":"data","node_id":"-187"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-193","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-193"}],"output_ports":[{"name":"data","node_id":"-193"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-213","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n\n context.pre_act = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续()费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n sid = symbol('000001.SZA')\n \n action = context.pre_act[context.pre_act['date'] == data.current_dt.strftime('%Y-%m-%d')]\n \n # 持仓\n cur_position = context.portfolio.positions[sid].amount \n \n if len(action['pre_action'])>0:\n\n if int(action['pre_action'])==0 and cur_position == 0:\n context.order(sid, 100)\n \n elif int(action['pre_action'])==1 and cur_position > 0:\n context.order_target_percent(sid, 0)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-213"},{"name":"options_data","node_id":"-213"},{"name":"history_ds","node_id":"-213"},{"name":"benchmark_ds","node_id":"-213"},{"name":"trading_calendar","node_id":"-213"}],"output_ports":[{"name":"raw_perf","node_id":"-213"}],"cacheable":false,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-3071","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-3071"}],"output_ports":[{"name":"data","node_id":"-3071"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-3698","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-3698"}],"output_ports":[{"name":"data","node_id":"-3698"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-2786","module_id":"BigQuantSpace.DQN_model.DQN_model-v10","parameters":[],"input_ports":[{"name":"data","node_id":"-2786"},{"name":"data_2","node_id":"-2786"}],"output_ports":[{"name":"data_1","node_id":"-2786"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-1873' Position='-452,-11,200,200'/><node_position Node='-215' Position='-231,164,200,200'/><node_position Node='-222' Position='-230,242,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='-139,-5,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='-304.1859588623047,342.337890625,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-519,119,200,200'/><node_position Node='-158' Position='104,-101,200,200'/><node_position Node='-167' Position='325,78,200,200'/><node_position Node='-174' Position='332,165,200,200'/><node_position Node='-182' Position='417,-90,200,200'/><node_position Node='-187' Position='174,249,200,200'/><node_position Node='-193' Position='14,72,200,200'/><node_position Node='-213' Position='-9,645,200,200'/><node_position Node='-3071' Position='40.17234802246094,543.83447265625,200,200'/><node_position Node='-3698' Position='175,349,200,200'/><node_position Node='-2786' Position='51.192779541015625,455.4966125488281,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [1]:
    # 本代码由可视化策略环境自动生成 2021年11月25日 10:01
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m2_initialize_bigquant_run(context):
        # 加载预测数据
    
        context.pre_act = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续()费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.hold_days = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m2_handle_data_bigquant_run(context, data):
        sid = symbol('000001.SZA')
        
        action = context.pre_act[context.pre_act['date'] == data.current_dt.strftime('%Y-%m-%d')]
        
        # 持仓
        cur_position = context.portfolio.positions[sid].amount 
        
        if len(action['pre_action'])>0:
    
            if int(action['pre_action'])==0 and  cur_position == 0:
                context.order(sid, 100)
                
            elif int(action['pre_action'])==1 and cur_position > 0:
                context.order_target_percent(sid, 0)
    
    # 回测引擎:准备数据,只执行一次
    def m2_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m2_before_trading_start_bigquant_run(context, data):
        pass
    
    
    m7 = M.instruments.v2(
        start_date='2012-01-01',
        end_date='2016-01-01',
        market='CN_STOCK_A',
        instrument_list="""000001.SZA
    """,
        max_count=0
    )
    
    m8 = M.advanced_auto_labeler.v2(
        instruments=m7.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m11 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    close_0/mean(close_0,5)
    close_0/mean(close_0,10)
    close_0/mean(close_0,20)
    close_0/open_0
    open_0/mean(close_0,5)
    open_0/mean(close_0,10)
    open_0/mean(close_0,20)"""
    )
    
    m9 = M.general_feature_extractor.v7(
        instruments=m7.data,
        features=m11.data,
        start_date='',
        end_date='',
        before_start_days=20
    )
    
    m10 = M.derived_feature_extractor.v3(
        input_data=m9.data,
        features=m11.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m12 = M.join.v3(
        data1=m8.data,
        data2=m10.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m14 = M.instruments.v2(
        start_date='2016-01-01',
        end_date='2017-01-01',
        market='CN_STOCK_A',
        instrument_list='000001.SZA',
        max_count=0
    )
    
    m19 = M.advanced_auto_labeler.v2(
        instruments=m14.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m17 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    close_0/mean(close_0,5)
    close_0/mean(close_0,10)
    close_0/mean(close_0,20)
    close_0/open_0
    open_0/mean(close_0,5)
    open_0/mean(close_0,10)
    open_0/mean(close_0,20)
    """
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m14.data,
        features=m17.data,
        start_date='',
        end_date='',
        before_start_days=20
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m17.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m18 = M.join.v3(
        data1=m19.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m4 = M.dropnan.v1(
        input_data=m18.data
    )
    
    m5 = M.DQN_model.v10(
        data=m12.data,
        data_2=m4.data
    )
    
    m3 = M.dropnan.v1(
        input_data=m5.data_1
    )
    
    m2 = M.trade.v4(
        instruments=m14.data,
        options_data=m3.data,
        start_date='',
        end_date='',
        initialize=m2_initialize_bigquant_run,
        handle_data=m2_handle_data_bigquant_run,
        prepare=m2_prepare_bigquant_run,
        before_trading_start=m2_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=100000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark=''
    )
    
    episode: 0
    total_reward: 165826.08728027344
    episode: 1
    total_reward: 284445.70819091797
    episode: 2
    total_reward: 286264.33239746094
    episode: 3
    total_reward: 286217.8956298828
    episode: 4
    total_reward: 286217.8956298828
    9eefdfafe01e4979b871f746722b28caT not found.
    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-1-9320cd90e834> in <module>
        196 )
        197 
    --> 198 m5 = M.DQN_model.v10(
        199     data=m12.data,
        200     data_2=m4.data
    
    AttributeError: 'NoneType' object has no attribute 'drop'