{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2014-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\nreturn_120\nreturn_240\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_5\nrank_return_10\nrank_return_20\nrank_return_120\nrank_return_240\nta_bias(close_0, 5)\nta_bias(close_0, 10)\nta_bias(close_0, 20)\nrank_market_cap_float_0-shift(rank_market_cap_float_0, 1)\npe_ttm_0\nta_rsi_14_0\nta_rsi_28_0\nsum(price_limit_status_0==3, 20)\nsum(price_limit_status_0==3, 60)\nsum(price_limit_status_0==3, 120)\nsum(price_limit_status_0==3, 250)\nreturn_5/return_10\n(return_5/return_10)/shift(return_5/return_10, 1)\nreturn_5/return_20\n(return_5/return_20)/shift(return_5/return_20, 1)\nta_sma_5_0/shift(ta_sma_5_0, 1)\nrank_return_0-shift(rank_return_0, 1)\nrank_amount_0-shift(rank_amount_0, 1)\nrank_turn_0-shift(rank_turn_0, 1)\nclose_0/ts_min(close_0, 120)\nclose_0/ts_max(close_0, 120)\nclose_0/ts_min(close_0, 250)\nclose_0/ts_max(close_0, 250)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='638,561,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='1037,751,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-12-11 11:27:45.995515] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-12-11 11:27:46.006924] INFO: moduleinvoker: 命中缓存
[2022-12-11 11:27:46.008649] INFO: moduleinvoker: instruments.v2 运行完成[0.013141s].
[2022-12-11 11:27:46.018370] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-12-11 11:27:46.029158] INFO: moduleinvoker: 命中缓存
[2022-12-11 11:27:46.030992] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.01262s].
[2022-12-11 11:27:46.035919] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-12-11 11:27:46.063016] INFO: moduleinvoker: input_features.v1 运行完成[0.027081s].
[2022-12-11 11:27:46.079942] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-12-11 11:27:47.547711] INFO: 基础特征抽取: 年份 2013, 特征行数=143272
[2022-12-11 11:27:51.378590] INFO: 基础特征抽取: 年份 2014, 特征行数=569948
[2022-12-11 11:27:55.331427] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2022-12-11 11:27:59.650129] INFO: 基础特征抽取: 年份 2016, 特征行数=641546
[2022-12-11 11:28:04.937175] INFO: 基础特征抽取: 年份 2017, 特征行数=743233
[2022-12-11 11:28:05.121467] INFO: 基础特征抽取: 总行数: 2667697
[2022-12-11 11:28:05.128521] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[19.048586s].
[2022-12-11 11:28:05.136902] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-12-11 11:28:11.362611] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.013s
[2022-12-11 11:28:11.372172] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.007s
[2022-12-11 11:28:11.378889] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.005s
[2022-12-11 11:28:11.384852] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.004s
[2022-12-11 11:28:16.084513] INFO: derived_feature_extractor: 提取完成 ta_bias(close_0, 5), 4.698s
[2022-12-11 11:28:21.177695] INFO: derived_feature_extractor: 提取完成 ta_bias(close_0, 10), 5.091s
[2022-12-11 11:28:26.820195] INFO: derived_feature_extractor: 提取完成 ta_bias(close_0, 20), 5.641s
[2022-12-11 11:28:27.176924] INFO: derived_feature_extractor: 提取完成 rank_market_cap_float_0-shift(rank_market_cap_float_0, 1), 0.355s
[2022-12-11 11:28:29.044805] INFO: derived_feature_extractor: 提取完成 sum(price_limit_status_0==3, 20), 1.866s
[2022-12-11 11:28:31.058159] INFO: derived_feature_extractor: 提取完成 sum(price_limit_status_0==3, 60), 2.012s
[2022-12-11 11:28:32.865694] INFO: derived_feature_extractor: 提取完成 sum(price_limit_status_0==3, 120), 1.806s
[2022-12-11 11:28:34.792103] INFO: derived_feature_extractor: 提取完成 sum(price_limit_status_0==3, 250), 1.924s
[2022-12-11 11:28:34.800390] INFO: derived_feature_extractor: 提取完成 return_5/return_10, 0.006s
[2022-12-11 11:28:35.261231] INFO: derived_feature_extractor: 提取完成 (return_5/return_10)/shift(return_5/return_10, 1), 0.459s
[2022-12-11 11:28:35.272997] INFO: derived_feature_extractor: 提取完成 return_5/return_20, 0.010s
[2022-12-11 11:28:35.761823] INFO: derived_feature_extractor: 提取完成 (return_5/return_20)/shift(return_5/return_20, 1), 0.487s
[2022-12-11 11:28:36.161949] INFO: derived_feature_extractor: 提取完成 ta_sma_5_0/shift(ta_sma_5_0, 1), 0.398s
[2022-12-11 11:28:36.561341] INFO: derived_feature_extractor: 提取完成 rank_return_0-shift(rank_return_0, 1), 0.398s
[2022-12-11 11:28:36.961199] INFO: derived_feature_extractor: 提取完成 rank_amount_0-shift(rank_amount_0, 1), 0.398s
[2022-12-11 11:28:37.360883] INFO: derived_feature_extractor: 提取完成 rank_turn_0-shift(rank_turn_0, 1), 0.398s
[2022-12-11 11:28:39.366266] INFO: derived_feature_extractor: 提取完成 close_0/ts_min(close_0, 120), 2.004s
[2022-12-11 11:28:41.402282] INFO: derived_feature_extractor: 提取完成 close_0/ts_max(close_0, 120), 2.034s
[2022-12-11 11:28:43.468953] INFO: derived_feature_extractor: 提取完成 close_0/ts_min(close_0, 250), 2.065s
[2022-12-11 11:28:45.465717] INFO: derived_feature_extractor: 提取完成 close_0/ts_max(close_0, 250), 1.995s
[2022-12-11 11:28:47.357723] INFO: derived_feature_extractor: /y_2013, 143272
[2022-12-11 11:28:48.713647] INFO: derived_feature_extractor: /y_2014, 569948
[2022-12-11 11:28:50.835291] INFO: derived_feature_extractor: /y_2015, 569698
[2022-12-11 11:28:53.070802] INFO: derived_feature_extractor: /y_2016, 641546
[2022-12-11 11:28:57.161976] INFO: derived_feature_extractor: /y_2017, 743233
[2022-12-11 11:28:59.351215] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[54.214302s].
[2022-12-11 11:28:59.360509] INFO: moduleinvoker: join.v3 开始运行..
[2022-12-11 11:29:06.328189] INFO: join: /y_2013, 行数=0/143272, 耗时=1.086412s
[2022-12-11 11:29:10.108734] INFO: join: /y_2014, 行数=567874/569948, 耗时=3.778341s
[2022-12-11 11:29:13.793792] INFO: join: /y_2015, 行数=560424/569698, 耗时=3.679548s
[2022-12-11 11:29:17.908387] INFO: join: /y_2016, 行数=637453/641546, 耗时=4.109005s
[2022-12-11 11:29:22.770817] INFO: join: /y_2017, 行数=721150/743233, 耗时=4.856077s
[2022-12-11 11:29:22.846150] INFO: join: 最终行数: 2486901
[2022-12-11 11:29:22.869677] INFO: moduleinvoker: join.v3 运行完成[23.509181s].
[2022-12-11 11:29:22.879251] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-12-11 11:29:24.440504] INFO: dropnan: /y_2013, 0/0
[2022-12-11 11:29:26.355533] INFO: dropnan: /y_2014, 98593/567874
[2022-12-11 11:29:28.819028] INFO: dropnan: /y_2015, 502640/560424
[2022-12-11 11:29:31.620095] INFO: dropnan: /y_2016, 596972/637453
[2022-12-11 11:29:34.800954] INFO: dropnan: /y_2017, 631451/721150
[2022-12-11 11:29:34.979357] INFO: dropnan: 行数: 1829656/2486901
[2022-12-11 11:29:34.991311] INFO: moduleinvoker: dropnan.v1 运行完成[12.112044s].
[2022-12-11 11:29:35.001898] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2022-12-11 11:29:42.334980] INFO: StockRanker: 特征预处理 ..
[2022-12-11 11:29:50.364965] INFO: StockRanker: prepare data: training ..
[2022-12-11 11:30:00.037734] INFO: StockRanker: sort ..
[2022-12-11 11:30:36.338657] INFO: StockRanker训练: 08a3c3ec 准备训练: 1829656 行数
[2022-12-11 11:30:36.624553] INFO: StockRanker训练: 正在训练 ..
[2022-12-11 11:35:17.721900] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[342.719985s].
[2022-12-11 11:35:17.728329] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-12-11 11:35:17.788809] INFO: moduleinvoker: 命中缓存
[2022-12-11 11:35:17.791204] INFO: moduleinvoker: instruments.v2 运行完成[0.062877s].
[2022-12-11 11:35:17.808169] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-12-11 11:35:19.642764] INFO: 基础特征抽取: 年份 2017, 特征行数=193398
[2022-12-11 11:35:25.428223] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2022-12-11 11:35:31.733492] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2022-12-11 11:35:38.597875] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2022-12-11 11:35:45.985332] INFO: 基础特征抽取: 年份 2021, 特征行数=1061527
[2022-12-11 11:35:46.158992] INFO: 基础特征抽取: 总行数: 3902740
[2022-12-11 11:35:46.166655] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[28.358502s].
[2022-12-11 11:35:46.174704] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-12-11 11:35:55.223027] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.012s
[2022-12-11 11:35:55.267174] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.042s
[2022-12-11 11:35:55.275295] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.006s
[2022-12-11 11:35:55.283257] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.006s
[2022-12-11 11:36:03.035728] INFO: derived_feature_extractor: 提取完成 ta_bias(close_0, 5), 7.751s
[2022-12-11 11:36:10.389575] INFO: derived_feature_extractor: 提取完成 ta_bias(close_0, 10), 7.352s
[2022-12-11 11:36:17.928844] INFO: derived_feature_extractor: 提取完成 ta_bias(close_0, 20), 7.537s
[2022-12-11 11:36:18.500961] INFO: derived_feature_extractor: 提取完成 rank_market_cap_float_0-shift(rank_market_cap_float_0, 1), 0.570s
[2022-12-11 11:36:21.686511] INFO: derived_feature_extractor: 提取完成 sum(price_limit_status_0==3, 20), 3.184s
[2022-12-11 11:36:24.637241] INFO: derived_feature_extractor: 提取完成 sum(price_limit_status_0==3, 60), 2.949s
[2022-12-11 11:36:27.826684] INFO: derived_feature_extractor: 提取完成 sum(price_limit_status_0==3, 120), 3.185s
[2022-12-11 11:36:30.996964] INFO: derived_feature_extractor: 提取完成 sum(price_limit_status_0==3, 250), 3.168s
[2022-12-11 11:36:31.007623] INFO: derived_feature_extractor: 提取完成 return_5/return_10, 0.008s
[2022-12-11 11:36:31.614418] INFO: derived_feature_extractor: 提取完成 (return_5/return_10)/shift(return_5/return_10, 1), 0.605s
[2022-12-11 11:36:31.661166] INFO: derived_feature_extractor: 提取完成 return_5/return_20, 0.045s
[2022-12-11 11:36:32.322383] INFO: derived_feature_extractor: 提取完成 (return_5/return_20)/shift(return_5/return_20, 1), 0.660s
[2022-12-11 11:36:32.908294] INFO: derived_feature_extractor: 提取完成 ta_sma_5_0/shift(ta_sma_5_0, 1), 0.584s
[2022-12-11 11:36:33.498806] INFO: derived_feature_extractor: 提取完成 rank_return_0-shift(rank_return_0, 1), 0.589s
[2022-12-11 11:36:34.110418] INFO: derived_feature_extractor: 提取完成 rank_amount_0-shift(rank_amount_0, 1), 0.610s
[2022-12-11 11:36:34.705046] INFO: derived_feature_extractor: 提取完成 rank_turn_0-shift(rank_turn_0, 1), 0.593s
[2022-12-11 11:36:37.984790] INFO: derived_feature_extractor: 提取完成 close_0/ts_min(close_0, 120), 3.278s
[2022-12-11 11:36:41.261577] INFO: derived_feature_extractor: 提取完成 close_0/ts_max(close_0, 120), 3.275s
[2022-12-11 11:36:44.463918] INFO: derived_feature_extractor: 提取完成 close_0/ts_min(close_0, 250), 3.200s
[2022-12-11 11:36:47.866115] INFO: derived_feature_extractor: 提取完成 close_0/ts_max(close_0, 250), 3.401s
[2022-12-11 11:36:50.609253] INFO: derived_feature_extractor: /y_2017, 193398
[2022-12-11 11:36:52.534088] INFO: derived_feature_extractor: /y_2018, 816987
[2022-12-11 11:36:55.877915] INFO: derived_feature_extractor: /y_2019, 884867
[2022-12-11 11:36:59.389053] INFO: derived_feature_extractor: /y_2020, 945961
[2022-12-11 11:37:03.437158] INFO: derived_feature_extractor: /y_2021, 1061527
[2022-12-11 11:37:05.657060] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[79.482347s].
[2022-12-11 11:37:05.682524] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-12-11 11:37:08.408197] INFO: dropnan: /y_2017, 0/193398
[2022-12-11 11:37:10.920197] INFO: dropnan: /y_2018, 152317/816987
[2022-12-11 11:37:14.649852] INFO: dropnan: /y_2019, 834634/884867
[2022-12-11 11:37:18.839929] INFO: dropnan: /y_2020, 873999/945961
[2022-12-11 11:37:23.303900] INFO: dropnan: /y_2021, 940726/1061527
[2022-12-11 11:37:23.469212] INFO: dropnan: 行数: 2801676/3902740
[2022-12-11 11:37:23.482351] INFO: moduleinvoker: dropnan.v1 运行完成[17.799829s].
[2022-12-11 11:37:23.492529] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-12-11 11:37:24.060584] ERROR: moduleinvoker: module name: stock_ranker_predict, module version: v5, trackeback: lightgbm.basic.LightGBMError: Wrong line at model file: origin_feature_names=["rank_return_20", "rank_return_120", "ta_bias(close_0, 5)", "rank_return_10", "close_0/ts_min(close_0, 120
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-26dafc6c4e534f25a5e0fc24f7ea6eed"}/bigcharts-data-end
---------------------------------------------------------------------------
LightGBMError Traceback (most recent call last)
<ipython-input-9-1054a23ff80d> in <module>
212 )
213
--> 214 m8 = M.stock_ranker_predict.v5(
215 model=m6.model,
216 data=m14.data,
LightGBMError: Wrong line at model file: origin_feature_names=["rank_return_20", "rank_return_120", "ta_bias(close_0, 5)", "rank_return_10", "close_0/ts_min(close_0, 120