复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-274:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-274:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-6060:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-288:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-6060:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-281:input_data","from_node_id":"-274:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"-295:input_data","from_node_id":"-288:data"},{"to_node_id":"-86:input_data","from_node_id":"-295:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-03-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-03-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"训练集","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:1日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -1) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"return_5/return_20#43: 5天的收益率/20天的收益率\nrank_amount_5#45:最近5日的成交额排名\navg_turn_10#46:平均10天的换手率\nmarket_cap_float_0<280000000000#47:流通市值<280亿\npe_ttm_0>0#48:ttm pe市盈率要大于0\npb_lf_0#49:市净率\nsum(mf_net_pct_main_0>0.12,30)>11#50:统计30天内主力流入占比大于12%的天数\nfs_roa_ttm_0>5#51:总资产报酬率roa要大于5\nfs_cash_ratio_0#52:现金流量\nclose_0>ts_max(close_0,56)#53:当日收盘价破56天最高价(创新高)\nta_sma_10_0/ta_sma_30_0#56: 10天的sma线/30天的sma线\nta_sar_0# 58:SAR抛物线指标\nswing_volatility_10_0/swing_volatility_60_0 #59: 10天的波动率/60天的波动率\nta_cci_14_0 #60:CCI -14天的指标\nrank_return_3 #61: 3天收益率的排名\nmf_net_amount_0>mf_net_amount_1 #62: 判断当日的资金流入净额>昨日资金流入净额\nmf_net_amount_xl_0>mean(mf_net_amount_xl_0, 30)# 64:当天的超大单流入净量>平均30天内的超大单流入净量(30天超大单MA线)\n(close_0-close_30)/close_30>1.25# 66:30天内的涨幅大于125%\n(close_0-close_5)/close_5>1.16# 67:5天内的涨幅>116%\nlist_days_0>365# 68:上市天数>365天\nta_bbands_middleband_28_0 #69:布林带28天均线\ncond0=sum(price_limit_status_0==3,80)>5 #70:统计80天内涨停板的次数大于5\ncond1=ta_trix(close_0, derive='long')#当日三重平滑平均线,多头\ncond2=ta_dma(close_0, 'long')#当日平行线差,多头\ncond3=low_0 > mean(close_0,20)#当日最低价,站稳20日均线\ncond5=close_0>open_0#当日红柱收盘\ncond6=st_status_0==0#过滤正常股票,滤除暂停上市股票\ncond7=ta_macd(close_0,'long')#指数平滑移动平均线,多头\ncond8=ta_ma(close_0,5, derive='long')#5日移动平均线,多头\ncond9=sum(ta_macd_dif(close_0,2,4,4),5)>sum(ta_macd_dea(close_0,2,4,4),5)#MACD的红柱量能线要大于绿色量能线\n#cond10= (close_0-close_1)/close_1 >0.04#当日涨幅大于4%\ncond11=((avg_amount_5-avg_amount_21)/avg_amount_21)>0#5日成交均值大于21日均值\ncond12=((avg_amount_5-avg_amount_28)/avg_amount_28)>0#5日成交均值大于28日均值\ncond13=((amount_0-avg_amount_5)/avg_amount_5)>0#当日成交量大于5日成交均值","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-04-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-04-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-274","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"90","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-274"},{"name":"features","node_id":"-274"}],"output_ports":[{"name":"data","node_id":"-274"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"90","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-6060","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n #context.set_commission(PerOrder(buy_cost=0.00001, sell_cost=0.0001, min_cost=1))\n \n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n context.stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n #context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 每只股票的权重平均分配\n context.stock_weights = 1/context.stock_count\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 0\n\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n today = data.current_dt.strftime('%Y-%m-%d')\n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n stock_now = len(equities); #获取当前持仓股票数量\n stock_count = context.stock_count\n \n # 按日期过滤得到今日的预测数据\n # 加载预测数据\n df = context.options['data'].read_df()\n df_today = df[df.date == data.current_dt.strftime('%Y-%m-%d')]\n df_today.set_index('instrument')\n \n \n now_stock = []\n sell_stock = []\n \n try:\n buy_list = context.daily_buy_stock[today]\n except:\n buy_list = []\n\n \n # 1. 资金分配\n #is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天) \n #stock_cash = context.portfolio.portfolio_value/stock_count\n #cash_avg = context.portfolio.portfolio_value\n #cash_for_buy = min(context.portfolio.cash, stock_cash)\n #cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n \n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n \n \n #if not is_staging :\n if 1==1 : \n if len(equities) > 0:\n for i in equities.keys():\n last_sale_date = equities[i].last_sale_date\t# 上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n if hold_days >= context.options['hold_days'] and i not in buy_list :\n print('日期:',today,'卖出2:',i)\n context.order_target(context.symbol(i), 0)\n sell_stock.append(i)\n stock_now = stock_now -1\n #print('日期:', today, '股票:', i, ' 卖出')\n \n# 3. 生成买入订单\n buy_num = stock_count - stock_now\n #leiJiShouYi=context.portfolio.returns\n leiJiShouYi=context.portfolio.portfolio_value/100000-1\n print('日期:', today, '累计收益:', leiJiShouYi)\n print('日期:', today, '账户总资产:', context.portfolio.portfolio_value) \n print('日期:', today, '账户初始金额:', context.portfolio. starting_cash) \n if len(buy_list)>0 and buy_num>0:\n print('日期:', today, '选出股票数量:', len(buy_list))\n buy_instruments = [i for i in buy_list if i not in now_stock][:15]\n cash_for_buy = context.portfolio.cash\n #是否存在重仓股\n isHasZC=0\n for i, instrument in enumerate(buy_instruments):\n try :\n my_zcs=list(df_today[df_today.instrument==instrument]['my_zc'])\n my_zc=my_zcs[0]\n except :\n my_zc=0\n if my_zc==1:\n isHasZC=1\n break\n if isHasZC==1:\n print('日期:', today, '选出重仓股票数量:', len(buy_list))\n #循环买入\n for i, instrument in enumerate(buy_instruments):\n #是否为ZC股\n try :\n my_zcs=list(df_today[df_today.instrument==instrument]['my_zc'])\n my_zc=my_zcs[0]\n except :\n my_zc=0\n #累计收益小于30%\n if leiJiShouYi<-10 :\n if isHasZC==1 :\n if my_zc==1:\n current_price = data.current(context.symbol(instrument), 'price') \n if cash_for_buy>0 and data.can_trade(context.symbol(instrument)):\n amount = math.floor(cash_for_buy / current_price / 100) * 100\n context.order(context.symbol(instrument), amount)\n print('日期:',today,'买入:',instrument)\n break\n else :\n print('日期:',today,'无资金或不能交易未买入:',instrument)\n else :\n current_price = data.current(context.symbol(instrument), 'price')\n if cash_for_buy>0 and data.can_trade(context.symbol(instrument)): \n amount = math.floor(cash_for_buy / current_price / 100) * 100\n context.order(context.symbol(instrument), amount)\n print('日期:',today,'买入:',instrument)\n break\n else :\n print('日期:',today,'无资金或不能交易未买入:',instrument)\n else :\n if my_zc==0 :\n current_price = data.current(context.symbol(instrument), 'price') \n if cash_for_buy>0 and data.can_trade(context.symbol(instrument)): \n amount = math.floor(cash_for_buy / current_price / 100) * 100\n context.order(context.symbol(instrument), amount)\n print('日期:',today,'买入:',instrument)\n break\n else :\n print('日期:',today,'无资金或不能交易未买入:',instrument)\n \n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n df = context.options['data'].read_df()\n # 函数:求满足开仓条件的股票列表\n def open_pos_con(df):\n return list(df[df['buy_condition']>0].instrument)\n # 函数:求满足平仓条件的股票列表\n def close_pos_con(df):\n return list(df[df['sell_condition']>0].instrument)\n \n # 每日卖出股票的数据框\n context.daily_sell_stock= df.groupby('date').apply(close_pos_con) \n # 每日买入股票的数据框\n context.daily_buy_stock= df.groupby('date').apply(open_pos_con) \n\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"#判断一下如果当日涨停,则取消卖单\n# if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.loc[today]>2 and _order.amount<0:\n# cancel_order(_order)\n# print(today,'尾盘涨停取消卖单',ins) ","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-6060"},{"name":"options_data","node_id":"-6060"},{"name":"history_ds","node_id":"-6060"},{"name":"benchmark_ds","node_id":"-6060"},{"name":"trading_calendar","node_id":"-6060"}],"output_ports":[{"name":"raw_perf","node_id":"-6060"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='200,88,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='91,252,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='700,27,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='302,454,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='236,323,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='625,523,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='235,387,200,200'/><node_position Node='-86' Position='1071,336,200,200'/><node_position Node='-274' Position='381,188,200,200'/><node_position Node='-281' Position='380,252,200,200'/><node_position Node='-288' Position='1072,213,200,200'/><node_position Node='-295' Position='1071,272,200,200'/><node_position Node='-6060' Position='651,626,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [19]:
    # 本代码由可视化策略环境自动生成 2022年4月8日 14:59
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m4_initialize_bigquant_run(context):
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        #context.set_commission(PerOrder(buy_cost=0.00001, sell_cost=0.0001, min_cost=1))
        
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        context.stock_count = 1
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        #context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 每只股票的权重平均分配
        context.stock_weights = 1/context.stock_count
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 1
        context.options['hold_days'] = 0
    
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m4_handle_data_bigquant_run(context, data):
        today = data.current_dt.strftime('%Y-%m-%d')
        equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}
        stock_now = len(equities); #获取当前持仓股票数量
        stock_count = context.stock_count
        
        # 按日期过滤得到今日的预测数据
        # 加载预测数据
        df = context.options['data'].read_df()
        df_today = df[df.date == data.current_dt.strftime('%Y-%m-%d')]
        df_today.set_index('instrument')
        
        
        now_stock = []
        sell_stock = []
           
        try:
            buy_list = context.daily_buy_stock[today]
        except:
            buy_list = []
    
        
        # 1. 资金分配
        #is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天) 
        #stock_cash = context.portfolio.portfolio_value/stock_count
        #cash_avg = context.portfolio.portfolio_value
        #cash_for_buy = min(context.portfolio.cash,  stock_cash)
        #cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
        
                
        #if not is_staging :
        if 1==1 :    
            if len(equities) > 0:
                for i in equities.keys():
                    last_sale_date = equities[i].last_sale_date	# 上次交易日期
                    delta_days = data.current_dt - last_sale_date  
                    hold_days = delta_days.days # 持仓天数
                    if hold_days >= context.options['hold_days'] and i not in buy_list :
                        print('日期:',today,'卖出2:',i)
                        context.order_target(context.symbol(i), 0)
                        sell_stock.append(i)
                        stock_now = stock_now -1
                        #print('日期:', today, '股票:', i, ' 卖出')
                     
    # 3. 生成买入订单
        buy_num = stock_count - stock_now
        #leiJiShouYi=context.portfolio.returns
        leiJiShouYi=context.portfolio.portfolio_value/100000-1
        print('日期:', today, '累计收益:', leiJiShouYi)
        print('日期:', today, '账户总资产:', context.portfolio.portfolio_value)  
        print('日期:', today, '账户初始金额:', context.portfolio. starting_cash)  
        if len(buy_list)>0 and buy_num>0:
            print('日期:', today, '选出股票数量:', len(buy_list))
            buy_instruments = [i for i in buy_list if i not in now_stock][:15]
            cash_for_buy = context.portfolio.cash
            #是否存在重仓股
            isHasZC=0
            for i, instrument in enumerate(buy_instruments):
                try :
                    my_zcs=list(df_today[df_today.instrument==instrument]['my_zc'])
                    my_zc=my_zcs[0]
                except :
                    my_zc=0
                if my_zc==1:
                    isHasZC=1
                    break
            if isHasZC==1:
                print('日期:', today, '选出重仓股票数量:', len(buy_list))
            #循环买入
            for i, instrument in enumerate(buy_instruments):
            #是否为ZC股
                try :
                    my_zcs=list(df_today[df_today.instrument==instrument]['my_zc'])
                    my_zc=my_zcs[0]
                except :
                    my_zc=0
                #累计收益小于30%
                if leiJiShouYi<-10 :
                    if isHasZC==1 :
                        if my_zc==1:
                            current_price = data.current(context.symbol(instrument), 'price')            
                            if cash_for_buy>0 and data.can_trade(context.symbol(instrument)):
                                amount = math.floor(cash_for_buy / current_price / 100) * 100
                                context.order(context.symbol(instrument), amount)
                                print('日期:',today,'买入:',instrument)
                                break
                            else :
                                print('日期:',today,'无资金或不能交易未买入:',instrument)
                    else :
                        current_price = data.current(context.symbol(instrument), 'price')
                        if cash_for_buy>0 and data.can_trade(context.symbol(instrument)):           
                            amount = math.floor(cash_for_buy / current_price / 100) * 100
                            context.order(context.symbol(instrument), amount)
                            print('日期:',today,'买入:',instrument)
                            break
                        else :
                            print('日期:',today,'无资金或不能交易未买入:',instrument)
                else :
                    if my_zc==0 :
                        current_price = data.current(context.symbol(instrument), 'price')            
                        if cash_for_buy>0 and data.can_trade(context.symbol(instrument)):           
                            amount = math.floor(cash_for_buy / current_price / 100) * 100
                            context.order(context.symbol(instrument), amount)
                            print('日期:',today,'买入:',instrument)
                            break
                        else :
                            print('日期:',today,'无资金或不能交易未买入:',instrument)
        
    
    # 回测引擎:准备数据,只执行一次
    def m4_prepare_bigquant_run(context):
        # 加载预测数据
        df = context.options['data'].read_df()
        # 函数:求满足开仓条件的股票列表
        def open_pos_con(df):
            return list(df[df['buy_condition']>0].instrument)
        # 函数:求满足平仓条件的股票列表
        def close_pos_con(df):
            return list(df[df['sell_condition']>0].instrument)
        
        # 每日卖出股票的数据框
        context.daily_sell_stock= df.groupby('date').apply(close_pos_con)  
        # 每日买入股票的数据框
        context.daily_buy_stock= df.groupby('date').apply(open_pos_con)  
    
    
    
    m1 = M.instruments.v2(
        start_date='2016-03-01',
        end_date='2020-03-31',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:1日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -1) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m3 = M.input_features.v1(
        features="""return_5/return_20#43: 5天的收益率/20天的收益率
    rank_amount_5#45:最近5日的成交额排名
    avg_turn_10#46:平均10天的换手率
    market_cap_float_0<280000000000#47:流通市值<280亿
    pe_ttm_0>0#48:ttm pe市盈率要大于0
    pb_lf_0#49:市净率
    sum(mf_net_pct_main_0>0.12,30)>11#50:统计30天内主力流入占比大于12%的天数
    fs_roa_ttm_0>5#51:总资产报酬率roa要大于5
    fs_cash_ratio_0#52:现金流量
    close_0>ts_max(close_0,56)#53:当日收盘价破56天最高价(创新高)
    ta_sma_10_0/ta_sma_30_0#56:   10天的sma线/30天的sma线
    ta_sar_0# 58:SAR抛物线指标
    swing_volatility_10_0/swing_volatility_60_0 #59: 10天的波动率/60天的波动率
    ta_cci_14_0 #60:CCI -14天的指标
    rank_return_3  #61:   3天收益率的排名
    mf_net_amount_0>mf_net_amount_1  #62:  判断当日的资金流入净额>昨日资金流入净额
    mf_net_amount_xl_0>mean(mf_net_amount_xl_0, 30)# 64:当天的超大单流入净量>平均30天内的超大单流入净量(30天超大单MA线)
    (close_0-close_30)/close_30>1.25#  66:30天内的涨幅大于125%
    (close_0-close_5)/close_5>1.16#  67:5天内的涨幅>116%
    list_days_0>365#  68:上市天数>365天
    ta_bbands_middleband_28_0 #69:布林带28天均线
    cond0=sum(price_limit_status_0==3,80)>5  #70:统计80天内涨停板的次数大于5
    cond1=ta_trix(close_0, derive='long')#当日三重平滑平均线,多头
    cond2=ta_dma(close_0, 'long')#当日平行线差,多头
    cond3=low_0 > mean(close_0,20)#当日最低价,站稳20日均线
    cond5=close_0>open_0#当日红柱收盘
    cond6=st_status_0==0#过滤正常股票,滤除暂停上市股票
    cond7=ta_macd(close_0,'long')#指数平滑移动平均线,多头
    cond8=ta_ma(close_0,5, derive='long')#5日移动平均线,多头
    cond9=sum(ta_macd_dif(close_0,2,4,4),5)>sum(ta_macd_dea(close_0,2,4,4),5)#MACD的红柱量能线要大于绿色量能线
    #cond10= (close_0-close_1)/close_1 >0.04#当日涨幅大于4%
    cond11=((avg_amount_5-avg_amount_21)/avg_amount_21)>0#5日成交均值大于21日均值
    cond12=((avg_amount_5-avg_amount_28)/avg_amount_28)>0#5日成交均值大于28日均值
    cond13=((amount_0-avg_amount_5)/avg_amount_5)>0#当日成交量大于5日成交均值"""
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m7 = M.join.v3(
        data1=m2.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m13 = M.dropnan.v1(
        input_data=m7.data
    )
    
    m6 = M.stock_ranker_train.v5(
        training_ds=m13.data,
        features=m3.data,
        learning_algorithm='排序',
        number_of_leaves=30,
        minimum_docs_per_leaf=1000,
        number_of_trees=20,
        learning_rate=0.1,
        max_bins=1023,
        feature_fraction=1,
        m_lazy_run=False
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2020-04-01'),
        end_date=T.live_run_param('trading_date', '2022-04-01'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m14 = M.dropnan.v1(
        input_data=m18.data
    )
    
    m8 = M.stock_ranker_predict.v5(
        model=m6.model,
        data=m14.data,
        m_lazy_run=False
    )
    
    m4 = M.trade.v4(
        instruments=m9.data,
        options_data=m8.predictions,
        start_date='',
        end_date='',
        initialize=m4_initialize_bigquant_run,
        handle_data=m4_handle_data_bigquant_run,
        prepare=m4_prepare_bigquant_run,
        before_trading_start=#判断一下如果当日涨停,则取消卖单
    #      if  df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.loc[today]>2 and _order.amount<0:
    #          cancel_order(_order)
    #          print(today,'尾盘涨停取消卖单',ins) ,
        volume_limit=0,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.HIX'
    )
    
      File "<ipython-input-19-28758254b2cc>", line 315
        volume_limit=0,
                    ^
    SyntaxError: invalid syntax