复制链接
克隆策略
In [3]:
import torch
import torch.nn as nn
from sklearn.model_selection import train_test_split

from bigmodels.models.gats import GATModel
from bigmodels.models.base import BaseModel
from bigmodels.callbacks import EarlyStopping

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-3493:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-25911:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-293:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3487:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3499:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-25911:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-2305:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-4463:input_data","from_node_id":"-106:data"},{"to_node_id":"-3487:input_1","from_node_id":"-113:data"},{"to_node_id":"-2631:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-3499:input_1","from_node_id":"-129:data"},{"to_node_id":"-10013:input_2","from_node_id":"-251:data"},{"to_node_id":"-10013:input_1","from_node_id":"-436:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-288:data"},{"to_node_id":"-2305:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-436:input_1","from_node_id":"-25911:data"},{"to_node_id":"-251:input_data","from_node_id":"-293:data"},{"to_node_id":"-113:input_data","from_node_id":"-4463:data"},{"to_node_id":"-129:input_data","from_node_id":"-2631:data"},{"to_node_id":"-288:input_data","from_node_id":"-3487:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-3493:data"},{"to_node_id":"-293:input_data","from_node_id":"-3499:data"},{"to_node_id":"-2431:input_1","from_node_id":"-10013:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1) - 1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nopen_0\nhigh_0\nlow_0 \namount_0\nturn_0 \nreturn_0\n \nclose_1\nopen_1\nhigh_1\nlow_1\nreturn_1\namount_1\nturn_1\n \nclose_2\nopen_2\nhigh_2\nlow_2\namount_2\nturn_2\nreturn_2\n \nclose_3\nopen_3\nhigh_3\nlow_3\namount_3\nturn_3\nreturn_3\n \nclose_4\nopen_4\nhigh_4\nlow_4\namount_4\nturn_4\nreturn_4\n \nmean(close_0, 5)\nmean(low_0, 5)\nmean(open_0, 5)\nmean(high_0, 5)\nmean(turn_0, 5)\nmean(amount_0, 5)\nmean(return_0, 5)\n \nts_max(close_0, 5)\nts_max(low_0, 5)\nts_max(open_0, 5)\nts_max(high_0, 5)\nts_max(turn_0, 5)\nts_max(amount_0, 5)\nts_max(return_0, 5)\n \nts_min(close_0, 5)\nts_min(low_0, 5)\nts_min(open_0, 5)\nts_min(high_0, 5)\nts_min(turn_0, 5)\nts_min(amount_0, 5)\nts_min(return_0, 5) \n \nstd(close_0, 5)\nstd(low_0, 5)\nstd(open_0, 5)\nstd(high_0, 5)\nstd(turn_0, 5)\nstd(amount_0, 5)\nstd(return_0, 5)\n \nts_rank(close_0, 5)\nts_rank(low_0, 5)\nts_rank(open_0, 5)\nts_rank(high_0, 5)\nts_rank(turn_0, 5)\nts_rank(amount_0, 5)\nts_rank(return_0, 5)\n \ndecay_linear(close_0, 5)\ndecay_linear(low_0, 5)\ndecay_linear(open_0, 5)\ndecay_linear(high_0, 5)\ndecay_linear(turn_0, 5)\ndecay_linear(amount_0, 5)\ndecay_linear(return_0, 5)\n \ncorrelation(volume_0, return_0, 5)\ncorrelation(volume_0, high_0, 5)\ncorrelation(volume_0, low_0, 5)\ncorrelation(volume_0, close_0, 5)\ncorrelation(volume_0, open_0, 5)\ncorrelation(volume_0, turn_0, 5)\n \ncorrelation(return_0, high_0, 5)\ncorrelation(return_0, low_0, 5)\ncorrelation(return_0, close_0, 5)\ncorrelation(return_0, open_0, 5)\ncorrelation(return_0, turn_0, 5)\n \ncorrelation(high_0, low_0, 5)\ncorrelation(high_0, close_0, 5)\ncorrelation(high_0, open_0, 5)\ncorrelation(high_0, turn_0, 5)\n \ncorrelation(low_0, close_0, 5)\ncorrelation(low_0, open_0, 5)\ncorrelation(low_0, turn_0, 5)\n \ncorrelation(close_0, open_0, 5)\ncorrelation(close_0, turn_0, 5)\n\ncorrelation(open_0, turn_0, 5)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2022-10-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":26,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":29,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":30,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":32,"comment":"","comment_collapsed":true},{"node_id":"-436","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3, saving_path=None):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n # train data \n train_data = input_1.read()\n x_train, x_val, y_train, y_val = train_test_split(train_data[\"x\"], train_data['y'], shuffle=True, random_state=2021)\n \n model = GATModel(d_feat=98, hidden_size=64, num_layers=2, dropout=0.1, base_model=\"GRU\")\n opt = torch.optim.Adam(model.parameters(), lr=1e-3)\n loss = nn.MSELoss()\n model.compile(optimizer=opt, loss=loss, device=\"cuda:0\")\n \n earlystop = EarlyStopping(patience=3)\n model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=128, callbacks=[earlystop], epochs=100, verbose=1, num_workers=4)\n \n if saving_path:\n torch.save(model.state_dict(), saving_path)\n \n data_1 = DataSource.write_pickle(model)\n return Outputs(data_1=data_1, data_2=None, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n \"saving_path\": \"/home/bigquant/work/userlib/gats_model_1109.pt.csv\"\n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-436"},{"name":"input_2","node_id":"-436"},{"name":"input_3","node_id":"-436"}],"output_ports":[{"name":"data_1","node_id":"-436"},{"name":"data_2","node_id":"-436"},{"name":"data_3","node_id":"-436"}],"cacheable":true,"seq_num":33,"comment":"GATs训练","comment_collapsed":false},{"node_id":"-288","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":35,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n \n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":false,"seq_num":41,"comment":"","comment_collapsed":true},{"node_id":"-25911","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-25911"},{"name":"features","node_id":"-25911"}],"output_ports":[{"name":"data","node_id":"-25911"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-293"},{"name":"features","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":true,"seq_num":36,"comment":"","comment_collapsed":true},{"node_id":"-2305","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-2305"},{"name":"options_data","node_id":"-2305"},{"name":"history_ds","node_id":"-2305"},{"name":"benchmark_ds","node_id":"-2305"},{"name":"trading_calendar","node_id":"-2305"}],"output_ports":[{"name":"raw_perf","node_id":"-2305"}],"cacheable":false,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-4463","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-4463"}],"output_ports":[{"name":"data","node_id":"-4463"},{"name":"left_data","node_id":"-4463"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-2631","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-2631"}],"output_ports":[{"name":"data","node_id":"-2631"},{"name":"left_data","node_id":"-2631"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-3487","module_id":"BigQuantSpace.standardlize.standardlize-v12","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3487"},{"name":"input_2","node_id":"-3487"}],"output_ports":[{"name":"data","node_id":"-3487"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-3493","module_id":"BigQuantSpace.standardlize.standardlize-v12","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3493"},{"name":"input_2","node_id":"-3493"}],"output_ports":[{"name":"data","node_id":"-3493"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-3499","module_id":"BigQuantSpace.standardlize.standardlize-v12","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3499"},{"name":"input_2","node_id":"-3499"}],"output_ports":[{"name":"data","node_id":"-3499"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-10013","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_dpath=None):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n # test data\n test_data = input_2.read()\n x_test = test_data[\"x\"]\n \n model = input_1.read()\n output = model.predict(x_test)\n data_1 = DataSource.write_pickle(output)\n return Outputs(data_1=data_1, data_2=None, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n \"saving_path\": \"/home/bigquant/work/userlib/gats_model_1109.pt.csv\"\n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-10013"},{"name":"input_2","node_id":"-10013"},{"name":"input_3","node_id":"-10013"}],"output_ports":[{"name":"data_1","node_id":"-10013"},{"name":"data_2","node_id":"-10013"},{"name":"data_3","node_id":"-10013"}],"cacheable":true,"seq_num":10,"comment":"GATs预测","comment_collapsed":false},{"node_id":"-530","module_id":"BigQuantSpace.hyper_run.hyper_run-v1","parameters":[{"name":"run","value":"def bigquant_run(bq_graph, inputs):\n test_years = ['2015', '2016', '2017', '2018', '2019', '2020', '2021', '2022']\n parameters_list = []\n \n for i in test_years:\n train_start_date = str(int(i)-2) + '-01' + '-01'\n train_end_date = str(int(i)-1) + '-12' + '-31'\n test_start_date = i + '-01' + '-01'\n if i == test_years[-1]:\n test_end_date = i+'-10'+'-31'\n else:\n test_end_date = i+'-12'+'-31'\n# test_end_date = i+'-12'+'-31'\n parameters = {'m22.start_date':train_start_date,\n 'm22.end_date':train_end_date,\n 'm26.start_date':test_start_date,\n 'm26.end_date':test_end_date,\n }\n \n parameters_list.append({'parameters': parameters})\n print(len(parameters_list), parameters_list)\n\n def run(parameters):\n try:\n print(parameters)\n return g.run(parameters)\n except Exception as e:\n print('ERROR --------', e)\n return None\n \n results = T.parallel_map(run, parameters_list, max_workers=1, remote_run=False, silent=True)\n\n return results\n","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-530"},{"name":"input_1","node_id":"-530"},{"name":"input_2","node_id":"-530"},{"name":"input_3","node_id":"-530"}],"output_ports":[{"name":"result","node_id":"-530"}],"cacheable":false,"seq_num":7,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='256.2103271484375,-20,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='62,109,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='778,-121,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='234,526,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1130,19,200,200'/><node_position Node='-106' Position='436,110,200,200'/><node_position Node='-113' Position='437,247,200,200'/><node_position Node='-122' Position='1132,90,200,200'/><node_position Node='-129' Position='1133,238,200,200'/><node_position Node='-251' Position='1134,473,200,200'/><node_position Node='-436' Position='572,737,200,200'/><node_position Node='-288' Position='438,385,200,200'/><node_position Node='-2431' Position='569,938,200,200'/><node_position Node='-25911' Position='234,607,200,200'/><node_position Node='-293' Position='1135,394,200,200'/><node_position Node='-2305' Position='747,1047,200,200'/><node_position Node='-4463' Position='436,178,200,200'/><node_position Node='-2631' Position='1131,164,200,200'/><node_position Node='-3487' Position='439,316,200,200'/><node_position Node='-3493' Position='55,214,200,200'/><node_position Node='-3499' Position='1134,319,200,200'/><node_position Node='-10013' Position='571,844,200,200'/><node_position Node='-530' Position='241,-132,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [4]:
    # 本代码由可视化策略环境自动生成 2022年11月10日 18:44
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m33_run_bigquant_run(input_1, input_2, input_3, saving_path=None):
        # 示例代码如下。在这里编写您的代码
        from sklearn.model_selection import train_test_split
        # train data 
        train_data = input_1.read()
        x_train, x_val, y_train, y_val = train_test_split(train_data["x"], train_data['y'], shuffle=True, random_state=2021)
        
        model = GATModel(d_feat=98, hidden_size=64, num_layers=2, dropout=0.1, base_model="GRU")
        opt = torch.optim.Adam(model.parameters(), lr=1e-3)
        loss = nn.MSELoss()
        model.compile(optimizer=opt, loss=loss, device="cuda:0")
        
        earlystop = EarlyStopping(patience=3)
        model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=128, callbacks=[earlystop], epochs=100, verbose=1, num_workers=4)
        
        if saving_path:
            torch.save(model.state_dict(), saving_path)
        
        data_1 = DataSource.write_pickle(model)
        return Outputs(data_1=data_1, data_2=None, data_3=None)
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m33_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m10_run_bigquant_run(input_1, input_2, input_dpath=None):
        # 示例代码如下。在这里编写您的代码
        from sklearn.model_selection import train_test_split
        # test data
        test_data = input_2.read()
        x_test = test_data["x"]
        
        model = input_1.read()
        output = model.predict(x_test)
        data_1 = DataSource.write_pickle(output)
        return Outputs(data_1=data_1, data_2=None, data_3=None)
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m10_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m41_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        pred_label = input_1.read_pickle()
        
        df = input_2.read_df()
        df = pd.DataFrame({'pred_label':pred_label[:], 'instrument':df.instrument, 'date':df.date})
        df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
        return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m41_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m1_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.hold_days = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m1_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.hold_days
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m1_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m1_before_trading_start_bigquant_run(context, data):
        pass
    
    
    g = T.Graph({
    
        'm22': 'M.instruments.v2',
        'm22.start_date': '2020-01-01',
        'm22.end_date': '2021-12-31',
        'm22.market': 'CN_STOCK_A',
        'm22.instrument_list': '',
    
        'm23': 'M.advanced_auto_labeler.v2',
        'm23.instruments': T.Graph.OutputPort('m22.data'),
        'm23.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1) - 1
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        'm23.start_date': '',
        'm23.end_date': '',
        'm23.benchmark': '000300.SHA',
        'm23.drop_na_label': True,
        'm23.cast_label_int': False,
    
        'm4': 'M.standardlize.v12',
        'm4.input_1': T.Graph.OutputPort('m23.data'),
        'm4.standard_func': 'ZScoreNorm',
        'm4.columns_input': 'label',
    
        'm24': 'M.input_features.v1',
        'm24.features': """close_0
    open_0
    high_0
    low_0 
    amount_0
    turn_0 
    return_0
     
    close_1
    open_1
    high_1
    low_1
    return_1
    amount_1
    turn_1
     
    close_2
    open_2
    high_2
    low_2
    amount_2
    turn_2
    return_2
     
    close_3
    open_3
    high_3
    low_3
    amount_3
    turn_3
    return_3
     
    close_4
    open_4
    high_4
    low_4
    amount_4
    turn_4
    return_4
     
    mean(close_0, 5)
    mean(low_0, 5)
    mean(open_0, 5)
    mean(high_0, 5)
    mean(turn_0, 5)
    mean(amount_0, 5)
    mean(return_0, 5)
     
    ts_max(close_0, 5)
    ts_max(low_0, 5)
    ts_max(open_0, 5)
    ts_max(high_0, 5)
    ts_max(turn_0, 5)
    ts_max(amount_0, 5)
    ts_max(return_0, 5)
     
    ts_min(close_0, 5)
    ts_min(low_0, 5)
    ts_min(open_0, 5)
    ts_min(high_0, 5)
    ts_min(turn_0, 5)
    ts_min(amount_0, 5)
    ts_min(return_0, 5) 
     
    std(close_0, 5)
    std(low_0, 5)
    std(open_0, 5)
    std(high_0, 5)
    std(turn_0, 5)
    std(amount_0, 5)
    std(return_0, 5)
     
    ts_rank(close_0, 5)
    ts_rank(low_0, 5)
    ts_rank(open_0, 5)
    ts_rank(high_0, 5)
    ts_rank(turn_0, 5)
    ts_rank(amount_0, 5)
    ts_rank(return_0, 5)
     
    decay_linear(close_0, 5)
    decay_linear(low_0, 5)
    decay_linear(open_0, 5)
    decay_linear(high_0, 5)
    decay_linear(turn_0, 5)
    decay_linear(amount_0, 5)
    decay_linear(return_0, 5)
     
    correlation(volume_0, return_0, 5)
    correlation(volume_0, high_0, 5)
    correlation(volume_0, low_0, 5)
    correlation(volume_0, close_0, 5)
    correlation(volume_0, open_0, 5)
    correlation(volume_0, turn_0, 5)
      
    correlation(return_0, high_0, 5)
    correlation(return_0, low_0, 5)
    correlation(return_0, close_0, 5)
    correlation(return_0, open_0, 5)
    correlation(return_0, turn_0, 5)
     
    correlation(high_0, low_0, 5)
    correlation(high_0, close_0, 5)
    correlation(high_0, open_0, 5)
    correlation(high_0, turn_0, 5)
     
    correlation(low_0, close_0, 5)
    correlation(low_0, open_0, 5)
    correlation(low_0, turn_0, 5)
     
    correlation(close_0, open_0, 5)
    correlation(close_0, turn_0, 5)
    
    correlation(open_0, turn_0, 5)""",
    
        'm27': 'M.general_feature_extractor.v7',
        'm27.instruments': T.Graph.OutputPort('m22.data'),
        'm27.features': T.Graph.OutputPort('m24.data'),
        'm27.start_date': '',
        'm27.end_date': '',
        'm27.before_start_days': 10,
    
        'm6': 'M.chinaa_stock_filter.v1',
        'm6.input_data': T.Graph.OutputPort('m27.data'),
        'm6.index_constituent_cond': ['全部'],
        'm6.board_cond': ['全部'],
        'm6.industry_cond': ['全部'],
        'm6.st_cond': ['全部'],
        'm6.delist_cond': ['全部'],
        'm6.output_left_data': False,
    
        'm28': 'M.derived_feature_extractor.v3',
        'm28.input_data': T.Graph.OutputPort('m6.data'),
        'm28.features': T.Graph.OutputPort('m24.data'),
        'm28.date_col': 'date',
        'm28.instrument_col': 'instrument',
        'm28.drop_na': True,
        'm28.remove_extra_columns': False,
    
        'm3': 'M.standardlize.v12',
        'm3.input_1': T.Graph.OutputPort('m28.data'),
        'm3.input_2': T.Graph.OutputPort('m24.data'),
        'm3.standard_func': 'ZScoreNorm',
        'm3.columns_input': '',
    
        'm35': 'M.fillnan.v1',
        'm35.input_data': T.Graph.OutputPort('m3.data'),
        'm35.features': T.Graph.OutputPort('m24.data'),
        'm35.fill_value': '0.0',
    
        'm25': 'M.join.v3',
        'm25.data1': T.Graph.OutputPort('m4.data'),
        'm25.data2': T.Graph.OutputPort('m35.data'),
        'm25.on': 'date,instrument',
        'm25.how': 'inner',
        'm25.sort': False,
    
        'm2': 'M.dl_convert_to_bin.v2',
        'm2.input_data': T.Graph.OutputPort('m25.data'),
        'm2.features': T.Graph.OutputPort('m24.data'),
        'm2.window_size': 5,
        'm2.feature_clip': 3,
        'm2.flatten': False,
        'm2.window_along_col': 'instrument',
    
        'm33': 'M.cached.v3',
        'm33.input_1': T.Graph.OutputPort('m2.data'),
        'm33.run': m33_run_bigquant_run,
        'm33.post_run': m33_post_run_bigquant_run,
        'm33.input_ports': '',
        'm33.params': """{
        "saving_path": "/home/bigquant/work/userlib/gats_model_1109.pt.csv"
    }""",
        'm33.output_ports': '',
    
        'm26': 'M.instruments.v2',
        'm26.start_date': T.live_run_param('trading_date', '2022-01-01'),
        'm26.end_date': T.live_run_param('trading_date', '2022-10-31'),
        'm26.market': 'CN_STOCK_A',
        'm26.instrument_list': '',
        'm26.max_count': 0,
    
        'm29': 'M.general_feature_extractor.v7',
        'm29.instruments': T.Graph.OutputPort('m26.data'),
        'm29.features': T.Graph.OutputPort('m24.data'),
        'm29.start_date': '',
        'm29.end_date': '',
        'm29.before_start_days': 10,
    
        'm8': 'M.chinaa_stock_filter.v1',
        'm8.input_data': T.Graph.OutputPort('m29.data'),
        'm8.index_constituent_cond': ['全部'],
        'm8.board_cond': ['全部'],
        'm8.industry_cond': ['全部'],
        'm8.st_cond': ['全部'],
        'm8.delist_cond': ['全部'],
        'm8.output_left_data': False,
    
        'm30': 'M.derived_feature_extractor.v3',
        'm30.input_data': T.Graph.OutputPort('m8.data'),
        'm30.features': T.Graph.OutputPort('m24.data'),
        'm30.date_col': 'date',
        'm30.instrument_col': 'instrument',
        'm30.drop_na': True,
        'm30.remove_extra_columns': False,
    
        'm5': 'M.standardlize.v12',
        'm5.input_1': T.Graph.OutputPort('m30.data'),
        'm5.input_2': T.Graph.OutputPort('m24.data'),
        'm5.standard_func': 'ZScoreNorm',
        'm5.columns_input': '',
    
        'm36': 'M.fillnan.v1',
        'm36.input_data': T.Graph.OutputPort('m5.data'),
        'm36.features': T.Graph.OutputPort('m24.data'),
        'm36.fill_value': '0.0',
    
        'm32': 'M.dl_convert_to_bin.v2',
        'm32.input_data': T.Graph.OutputPort('m36.data'),
        'm32.features': T.Graph.OutputPort('m24.data'),
        'm32.window_size': 5,
        'm32.feature_clip': 3,
        'm32.flatten': False,
        'm32.window_along_col': 'instrument',
    
        'm10': 'M.cached.v3',
        'm10.input_1': T.Graph.OutputPort('m33.data_1'),
        'm10.input_2': T.Graph.OutputPort('m32.data'),
        'm10.run': m10_run_bigquant_run,
        'm10.post_run': m10_post_run_bigquant_run,
        'm10.input_ports': '',
        'm10.params': """{
        "saving_path": "/home/bigquant/work/userlib/gats_model_1109.pt.csv"
    }""",
        'm10.output_ports': '',
    
        'm41': 'M.cached.v3',
        'm41.input_1': T.Graph.OutputPort('m10.data_1'),
        'm41.input_2': T.Graph.OutputPort('m30.data'),
        'm41.run': m41_run_bigquant_run,
        'm41.post_run': m41_post_run_bigquant_run,
        'm41.input_ports': '',
        'm41.params': '{}',
        'm41.output_ports': '',
        'm41.m_cached': False,
    
        'm1': 'M.trade.v4',
        'm1.instruments': T.Graph.OutputPort('m26.data'),
        'm1.options_data': T.Graph.OutputPort('m41.data_1'),
        'm1.start_date': '',
        'm1.end_date': '',
        'm1.initialize': m1_initialize_bigquant_run,
        'm1.handle_data': m1_handle_data_bigquant_run,
        'm1.prepare': m1_prepare_bigquant_run,
        'm1.before_trading_start': m1_before_trading_start_bigquant_run,
        'm1.volume_limit': 0.025,
        'm1.order_price_field_buy': 'open',
        'm1.order_price_field_sell': 'close',
        'm1.capital_base': 1000000,
        'm1.auto_cancel_non_tradable_orders': True,
        'm1.data_frequency': 'daily',
        'm1.price_type': '真实价格',
        'm1.product_type': '股票',
        'm1.plot_charts': True,
        'm1.backtest_only': False,
        'm1.benchmark': '000300.HIX',
    })
    
    # g.run({})
    
    
    def m7_run_bigquant_run(bq_graph, inputs):
        test_years = ['2015', '2016', '2017', '2018', '2019', '2020', '2021', '2022']
        parameters_list = []
         
        for i in test_years:
            train_start_date = str(int(i)-2) + '-01' + '-01'
            train_end_date = str(int(i)-1) + '-12' + '-31'
            test_start_date = i + '-01' + '-01'
            if i == test_years[-1]:
                test_end_date = i+'-10'+'-31'
            else:
                test_end_date  =  i+'-12'+'-31'
    #         test_end_date  =  i+'-12'+'-31'
            parameters = {'m22.start_date':train_start_date,
                          'm22.end_date':train_end_date,
                          'm26.start_date':test_start_date,
                          'm26.end_date':test_end_date,
                         }
            
            parameters_list.append({'parameters': parameters})
        print(len(parameters_list), parameters_list)
    
        def run(parameters):
            try:
                print(parameters)
                return g.run(parameters)
            except Exception as e:
                print('ERROR --------', e)
                return None
            
        results = T.parallel_map(run, parameters_list, max_workers=1, remote_run=False, silent=True)
    
        return results
    
    
    m7 = M.hyper_run.v1(
        run=m7_run_bigquant_run,
        run_now=True,
        bq_graph=g
    )
    
    8 [{'parameters': {'m22.start_date': '2013-01-01', 'm22.end_date': '2014-12-31', 'm26.start_date': '2015-01-01', 'm26.end_date': '2015-12-31'}}, {'parameters': {'m22.start_date': '2014-01-01', 'm22.end_date': '2015-12-31', 'm26.start_date': '2016-01-01', 'm26.end_date': '2016-12-31'}}, {'parameters': {'m22.start_date': '2015-01-01', 'm22.end_date': '2016-12-31', 'm26.start_date': '2017-01-01', 'm26.end_date': '2017-12-31'}}, {'parameters': {'m22.start_date': '2016-01-01', 'm22.end_date': '2017-12-31', 'm26.start_date': '2018-01-01', 'm26.end_date': '2018-12-31'}}, {'parameters': {'m22.start_date': '2017-01-01', 'm22.end_date': '2018-12-31', 'm26.start_date': '2019-01-01', 'm26.end_date': '2019-12-31'}}, {'parameters': {'m22.start_date': '2018-01-01', 'm22.end_date': '2019-12-31', 'm26.start_date': '2020-01-01', 'm26.end_date': '2020-12-31'}}, {'parameters': {'m22.start_date': '2019-01-01', 'm22.end_date': '2020-12-31', 'm26.start_date': '2021-01-01', 'm26.end_date': '2021-12-31'}}, {'parameters': {'m22.start_date': '2020-01-01', 'm22.end_date': '2021-12-31', 'm26.start_date': '2022-01-01', 'm26.end_date': '2022-10-31'}}]
    
    {'m22.start_date': '2013-01-01', 'm22.end_date': '2014-12-31', 'm26.start_date': '2015-01-01', 'm26.end_date': '2015-12-31'}
    
    epoch 1   |  train_loss 0.98893|  vall_loss 0.98235|  0:00:51s
    epoch 2   |  train_loss 0.98098|  vall_loss 0.97554|  0:01:43s
    epoch 3   |  train_loss 0.97530|  vall_loss 0.97126|  0:02:36s
    epoch 4   |  train_loss 0.96945|  vall_loss 0.96689|  0:03:29s
    epoch 5   |  train_loss 0.96281|  vall_loss 0.96559|  0:04:23s
    epoch 6   |  train_loss 0.95637|  vall_loss 0.96433|  0:05:18s
    epoch 7   |  train_loss 0.95064|  vall_loss 0.96268|  0:06:10s
    epoch 8   |  train_loss 0.94479|  vall_loss 0.96100|  0:07:04s
    epoch 9   |  train_loss 0.93921|  vall_loss 0.95782|  0:07:58s
    epoch 10  |  train_loss 0.93458|  vall_loss 0.95814|  0:08:51s
    epoch 11  |  train_loss 0.92947|  vall_loss 0.96044|  0:09:45s
    epoch 12  |  train_loss 0.92644|  vall_loss 0.95881|  0:10:40s
    early stop on epoch: 12
    
    • 收益率294.4%
    • 年化收益率312.55%
    • 基准收益率5.58%
    • 阿尔法3.24
    • 贝塔0.95
    • 夏普比率2.76
    • 胜率0.61
    • 盈亏比0.85
    • 收益波动率56.03%
    • 信息比率0.22
    • 最大回撤51.59%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-76ca59f44ebc4c37bd469f278f76b261"}/bigcharts-data-end
    {'m22.start_date': '2014-01-01', 'm22.end_date': '2015-12-31', 'm26.start_date': '2016-01-01', 'm26.end_date': '2016-12-31'}
    
    epoch 1   |  train_loss 0.98389|  vall_loss 0.97405|  0:00:57s
    epoch 2   |  train_loss 0.97539|  vall_loss 0.97134|  0:01:55s
    epoch 3   |  train_loss 0.96781|  vall_loss 0.96206|  0:02:52s
    epoch 4   |  train_loss 0.96037|  vall_loss 0.95718|  0:03:50s
    epoch 5   |  train_loss 0.95327|  vall_loss 0.95336|  0:04:49s
    epoch 6   |  train_loss 0.94595|  vall_loss 0.94930|  0:05:46s
    epoch 7   |  train_loss 0.93951|  vall_loss 0.94815|  0:06:44s
    epoch 8   |  train_loss 0.93302|  vall_loss 0.94695|  0:07:42s
    epoch 9   |  train_loss 0.92677|  vall_loss 0.94212|  0:08:41s
    epoch 10  |  train_loss 0.92124|  vall_loss 0.94479|  0:09:37s
    epoch 11  |  train_loss 0.91640|  vall_loss 0.94273|  0:10:36s
    epoch 12  |  train_loss 0.91255|  vall_loss 0.94032|  0:11:35s
    epoch 13  |  train_loss 0.90905|  vall_loss 0.93939|  0:12:34s
    epoch 14  |  train_loss 0.90571|  vall_loss 0.94173|  0:13:32s
    epoch 15  |  train_loss 0.90268|  vall_loss 0.94735|  0:14:31s
    epoch 16  |  train_loss 0.90026|  vall_loss 0.93997|  0:15:30s
    early stop on epoch: 16
    
    • 收益率27.17%
    • 年化收益率28.17%
    • 基准收益率-11.28%
    • 阿尔法0.52
    • 贝塔1.06
    • 夏普比率0.8
    • 胜率0.53
    • 盈亏比0.96
    • 收益波动率35.22%
    • 信息比率0.1
    • 最大回撤20.61%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-2ec14431b0e04689841ae4005e0537ef"}/bigcharts-data-end
    {'m22.start_date': '2015-01-01', 'm22.end_date': '2016-12-31', 'm26.start_date': '2017-01-01', 'm26.end_date': '2017-12-31'}
    
    epoch 1   |  train_loss 0.98114|  vall_loss 0.97319|  0:01:08s
    epoch 2   |  train_loss 0.97165|  vall_loss 0.96438|  0:02:18s
    epoch 3   |  train_loss 0.96381|  vall_loss 0.96104|  0:03:30s
    epoch 4   |  train_loss 0.95712|  vall_loss 0.95553|  0:04:40s
    epoch 5   |  train_loss 0.94978|  vall_loss 0.95238|  0:05:49s
    epoch 6   |  train_loss 0.94258|  vall_loss 0.94861|  0:06:57s
    epoch 7   |  train_loss 0.93592|  vall_loss 0.94873|  0:08:06s
    epoch 8   |  train_loss 0.93065|  vall_loss 0.94582|  0:09:17s
    epoch 9   |  train_loss 0.92500|  vall_loss 0.94405|  0:10:28s
    epoch 10  |  train_loss 0.92008|  vall_loss 0.94377|  0:11:36s
    epoch 11  |  train_loss 0.91582|  vall_loss 0.94765|  0:12:45s
    epoch 12  |  train_loss 0.91169|  vall_loss 0.94730|  0:13:53s
    epoch 13  |  train_loss 0.90844|  vall_loss 0.93983|  0:15:00s
    epoch 14  |  train_loss 0.90515|  vall_loss 0.94307|  0:16:11s
    epoch 15  |  train_loss 0.90274|  vall_loss 0.94190|  0:17:20s
    epoch 16  |  train_loss 0.89984|  vall_loss 0.94311|  0:18:22s
    early stop on epoch: 16
    
    • 收益率3.05%
    • 年化收益率3.15%
    • 基准收益率21.78%
    • 阿尔法-0.11
    • 贝塔0.96
    • 夏普比率0.17
    • 胜率0.49
    • 盈亏比0.89
    • 收益波动率33.72%
    • 信息比率-0.02
    • 最大回撤31.02%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-5687f41177124d39bc4778bc74ca03b8"}/bigcharts-data-end
    {'m22.start_date': '2016-01-01', 'm22.end_date': '2017-12-31', 'm26.start_date': '2018-01-01', 'm26.end_date': '2018-12-31'}
    
    epoch 1   |  train_loss 0.98860|  vall_loss 0.98707|  0:01:09s
    epoch 2   |  train_loss 0.98118|  vall_loss 0.98287|  0:02:23s
    epoch 3   |  train_loss 0.97473|  vall_loss 0.97880|  0:03:41s
    epoch 4   |  train_loss 0.96853|  vall_loss 0.97397|  0:05:01s
    epoch 5   |  train_loss 0.96265|  vall_loss 0.97003|  0:06:19s
    epoch 6   |  train_loss 0.95730|  vall_loss 0.96664|  0:07:39s
    epoch 7   |  train_loss 0.95117|  vall_loss 0.96824|  0:08:57s
    epoch 8   |  train_loss 0.94678|  vall_loss 0.96461|  0:10:15s
    epoch 9   |  train_loss 0.94218|  vall_loss 0.96308|  0:11:34s
    epoch 10  |  train_loss 0.93813|  vall_loss 0.96333|  0:12:49s
    epoch 11  |  train_loss 0.93401|  vall_loss 0.96618|  0:14:04s
    epoch 12  |  train_loss 0.93061|  vall_loss 0.96237|  0:15:21s
    epoch 13  |  train_loss 0.92765|  vall_loss 0.96244|  0:16:40s
    epoch 14  |  train_loss 0.92437|  vall_loss 0.96043|  0:18:00s
    epoch 15  |  train_loss 0.92248|  vall_loss 0.95950|  0:19:18s
    epoch 16  |  train_loss 0.91994|  vall_loss 0.96255|  0:20:30s
    epoch 17  |  train_loss 0.91735|  vall_loss 0.96250|  0:21:40s
    epoch 18  |  train_loss 0.91632|  vall_loss 0.96090|  0:22:51s
    early stop on epoch: 18
    
    • 收益率7.05%
    • 年化收益率7.32%
    • 基准收益率-25.31%
    • 阿尔法0.47
    • 贝塔0.9
    • 夏普比率0.29
    • 胜率0.49
    • 盈亏比1.03
    • 收益波动率36.26%
    • 信息比率0.08
    • 最大回撤21.15%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-958265b916ff48fd93c1c4f41a1fb5a7"}/bigcharts-data-end
    {'m22.start_date': '2017-01-01', 'm22.end_date': '2018-12-31', 'm26.start_date': '2019-01-01', 'm26.end_date': '2019-12-31'}
    
    epoch 1   |  train_loss 0.98604|  vall_loss 0.98402|  0:01:21s
    epoch 2   |  train_loss 0.97797|  vall_loss 0.97767|  0:02:41s
    epoch 3   |  train_loss 0.97248|  vall_loss 0.97377|  0:04:00s
    epoch 4   |  train_loss 0.96738|  vall_loss 0.97030|  0:05:20s
    epoch 5   |  train_loss 0.96220|  vall_loss 0.96933|  0:06:38s
    epoch 6   |  train_loss 0.95785|  vall_loss 0.96846|  0:07:59s
    epoch 7   |  train_loss 0.95381|  vall_loss 0.96807|  0:09:16s
    epoch 8   |  train_loss 0.95014|  vall_loss 0.96537|  0:10:37s
    epoch 9   |  train_loss 0.94683|  vall_loss 0.96854|  0:11:59s
    epoch 10  |  train_loss 0.94315|  vall_loss 0.96493|  0:13:15s
    epoch 11  |  train_loss 0.94026|  vall_loss 0.96472|  0:14:33s
    epoch 12  |  train_loss 0.93798|  vall_loss 0.96292|  0:15:53s
    epoch 13  |  train_loss 0.93596|  vall_loss 0.96405|  0:17:13s
    epoch 14  |  train_loss 0.93286|  vall_loss 0.96153|  0:18:32s
    epoch 15  |  train_loss 0.93071|  vall_loss 0.96489|  0:19:48s
    epoch 16  |  train_loss 0.92957|  vall_loss 0.96401|  0:21:08s
    epoch 17  |  train_loss 0.92809|  vall_loss 0.96459|  0:22:28s
    early stop on epoch: 17
    
    • 收益率41.18%
    • 年化收益率42.79%
    • 基准收益率36.07%
    • 阿尔法0.09
    • 贝塔0.91
    • 夏普比率1.29
    • 胜率0.5
    • 盈亏比1.25
    • 收益波动率28.63%
    • 信息比率0.02
    • 最大回撤21.0%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-e727f9c2564b444e83cb40d736d2b7b8"}/bigcharts-data-end
    {'m22.start_date': '2018-01-01', 'm22.end_date': '2019-12-31', 'm26.start_date': '2020-01-01', 'm26.end_date': '2020-12-31'}
    
    epoch 1   |  train_loss 0.98626|  vall_loss 0.98235|  0:01:26s
    epoch 2   |  train_loss 0.97941|  vall_loss 0.97690|  0:02:54s
    epoch 3   |  train_loss 0.97383|  vall_loss 0.97595|  0:04:19s
    epoch 4   |  train_loss 0.96913|  vall_loss 0.97210|  0:05:43s
    epoch 5   |  train_loss 0.96499|  vall_loss 0.96921|  0:07:10s
    epoch 6   |  train_loss 0.96053|  vall_loss 0.96964|  0:08:42s
    epoch 7   |  train_loss 0.95625|  vall_loss 0.96849|  0:10:12s
    epoch 8   |  train_loss 0.95273|  vall_loss 0.96583|  0:11:40s
    epoch 9   |  train_loss 0.94839|  vall_loss 0.96734|  0:13:08s
    epoch 10  |  train_loss 0.94552|  vall_loss 0.96566|  0:14:38s
    epoch 11  |  train_loss 0.94275|  vall_loss 0.96495|  0:16:09s
    epoch 12  |  train_loss 0.94120|  vall_loss 0.96438|  0:17:37s
    epoch 13  |  train_loss 0.93854|  vall_loss 0.96689|  0:19:04s
    epoch 14  |  train_loss 0.93662|  vall_loss 0.96701|  0:20:33s
    epoch 15  |  train_loss 0.93498|  vall_loss 0.96347|  0:22:01s
    epoch 16  |  train_loss 0.93344|  vall_loss 0.96499|  0:23:32s
    epoch 17  |  train_loss 0.93222|  vall_loss 0.96324|  0:25:01s
    epoch 18  |  train_loss 0.93109|  vall_loss 0.96547|  0:26:29s
    epoch 19  |  train_loss 0.93012|  vall_loss 0.96337|  0:27:57s
    epoch 20  |  train_loss 0.92928|  vall_loss 0.96510|  0:29:25s
    early stop on epoch: 20
    
    • 收益率79.06%
    • 年化收益率82.96%
    • 基准收益率27.21%
    • 阿尔法0.48
    • 贝塔1.04
    • 夏普比率1.67
    • 胜率0.5
    • 盈亏比1.36
    • 收益波动率38.88%
    • 信息比率0.08
    • 最大回撤22.75%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-7b7e870c84e4424f8a7eee8ac46059c7"}/bigcharts-data-end
    {'m22.start_date': '2019-01-01', 'm22.end_date': '2020-12-31', 'm26.start_date': '2021-01-01', 'm26.end_date': '2021-12-31'}
    
    epoch 1   |  train_loss 0.98917|  vall_loss 0.98904|  0:01:32s
    epoch 2   |  train_loss 0.98402|  vall_loss 0.98544|  0:03:07s
    epoch 3   |  train_loss 0.97990|  vall_loss 0.98404|  0:04:49s
    epoch 4   |  train_loss 0.97618|  vall_loss 0.97960|  0:06:31s
    epoch 5   |  train_loss 0.97288|  vall_loss 0.97891|  0:08:14s
    epoch 6   |  train_loss 0.96947|  vall_loss 0.97660|  0:09:56s
    epoch 7   |  train_loss 0.96627|  vall_loss 0.97526|  0:11:37s
    epoch 8   |  train_loss 0.96269|  vall_loss 0.97394|  0:13:17s
    epoch 9   |  train_loss 0.96024|  vall_loss 0.97503|  0:14:59s
    epoch 10  |  train_loss 0.95705|  vall_loss 0.97345|  0:16:40s
    epoch 11  |  train_loss 0.95393|  vall_loss 0.97250|  0:18:25s
    epoch 12  |  train_loss 0.95144|  vall_loss 0.97657|  0:20:09s
    epoch 13  |  train_loss 0.94917|  vall_loss 0.97144|  0:21:48s
    epoch 14  |  train_loss 0.94658|  vall_loss 0.97335|  0:23:26s
    epoch 15  |  train_loss 0.94470|  vall_loss 0.97093|  0:25:06s
    epoch 16  |  train_loss 0.94337|  vall_loss 0.97345|  0:26:39s
    epoch 17  |  train_loss 0.94237|  vall_loss 0.97120|  0:28:09s
    epoch 18  |  train_loss 0.94066|  vall_loss 0.97121|  0:29:41s
    early stop on epoch: 18
    
    • 收益率68.16%
    • 年化收益率71.43%
    • 基准收益率-5.2%
    • 阿尔法0.81
    • 贝塔0.45
    • 夏普比率1.72
    • 胜率0.48
    • 盈亏比1.42
    • 收益波动率32.81%
    • 信息比率0.12
    • 最大回撤14.8%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-c57338fdaac74d668c4514f6fd346b75"}/bigcharts-data-end
    {'m22.start_date': '2020-01-01', 'm22.end_date': '2021-12-31', 'm26.start_date': '2022-01-01', 'm26.end_date': '2022-10-31'}
    
    epoch 1   |  train_loss 0.99214|  vall_loss 0.98630|  0:01:48s
    epoch 2   |  train_loss 0.98838|  vall_loss 0.98395|  0:03:32s
    epoch 3   |  train_loss 0.98492|  vall_loss 0.98220|  0:05:17s
    epoch 4   |  train_loss 0.98172|  vall_loss 0.98070|  0:07:02s
    epoch 5   |  train_loss 0.97826|  vall_loss 0.97875|  0:08:48s
    epoch 6   |  train_loss 0.97515|  vall_loss 0.97768|  0:10:34s
    epoch 7   |  train_loss 0.97189|  vall_loss 0.97709|  0:12:21s
    epoch 8   |  train_loss 0.96834|  vall_loss 0.97514|  0:14:06s
    epoch 9   |  train_loss 0.96608|  vall_loss 0.97492|  0:15:53s
    epoch 10  |  train_loss 0.96339|  vall_loss 0.97605|  0:17:39s
    epoch 11  |  train_loss 0.96097|  vall_loss 0.97315|  0:19:25s
    epoch 12  |  train_loss 0.95872|  vall_loss 0.97279|  0:21:11s
    epoch 13  |  train_loss 0.95651|  vall_loss 0.97525|  0:23:00s
    epoch 14  |  train_loss 0.95457|  vall_loss 0.97404|  0:24:46s
    epoch 15  |  train_loss 0.95347|  vall_loss 0.97531|  0:26:32s
    early stop on epoch: 15
    
    • 收益率-7.77%
    • 年化收益率-9.78%
    • 基准收益率-28.98%
    • 阿尔法0.37
    • 贝塔0.88
    • 夏普比率-0.22
    • 胜率0.45
    • 盈亏比1.16
    • 收益波动率34.18%
    • 信息比率0.08
    • 最大回撤26.29%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4927a14a97b84bff848c28fdf5f5df0c"}/bigcharts-data-end
    In [5]:
    df = pd.DataFrame() 
    for i in range(len(m7.result)):
        tmp = m7.result[i]['m1'].raw_perf.read()
        df = df.append(tmp[['returns','benchmark_period_return']])
        
    import empyrical
    
    def get_stats(returns, benchmark_period_return):
        return_ratio  = empyrical.cum_returns_final(returns)
        annual_return_ratio  = empyrical.annual_return(returns)
        sharp_ratio = empyrical.sharpe_ratio(returns,0.035/252)
        return_volatility = empyrical.annual_volatility(returns)
        max_drawdown  = empyrical.max_drawdown(returns)
        benchmark_returns = (benchmark_period_return+1)/(benchmark_period_return+1).shift(1)-1
        alpha, beta =empyrical.alpha_beta_aligned(returns, benchmark_returns)
        
        return {
          'return_ratio': return_ratio,
          'annual_return_ratio': annual_return_ratio,
          'beta': beta,
          'alpha': alpha,
          'sharp_ratio': sharp_ratio,
          'return_volatility': return_volatility,
          'max_drawdown': max_drawdown,
          '收益回测比': abs(annual_return_ratio / max_drawdown)
        }
    d=get_stats(df['returns'], df['benchmark_period_return'])
    df1=pd.DataFrame.from_dict(d,orient='index')
    df1.T
    
    Out[5]:
    return_ratio annual_return_ratio beta alpha sharp_ratio return_volatility max_drawdown 收益回测比
    0 20.693397 0.503003 0.554732 0.619133 1.173869 0.378963 -0.515877 0.975044
    In [6]:
    T.plot((df['returns']+1).cumprod())