{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-238:instruments","from_node_id":"-134:data"},{"to_node_id":"-196:instruments","from_node_id":"-134:data"},{"to_node_id":"-196:features","from_node_id":"-191:data"},{"to_node_id":"-203:features","from_node_id":"-191:data"},{"to_node_id":"-153:features","from_node_id":"-191:data"},{"to_node_id":"-183:features","from_node_id":"-191:data"},{"to_node_id":"-160:features","from_node_id":"-191:data"},{"to_node_id":"-203:input_data","from_node_id":"-196:data"},{"to_node_id":"-211:input_1","from_node_id":"-203:data"},{"to_node_id":"-214:input_1","from_node_id":"-211:data_1"},{"to_node_id":"-228:data2","from_node_id":"-214:data"},{"to_node_id":"-153:instruments","from_node_id":"-144:data"},{"to_node_id":"-292:instruments","from_node_id":"-144:data"},{"to_node_id":"-160:input_data","from_node_id":"-153:data"},{"to_node_id":"-312:input_1","from_node_id":"-160:data"},{"to_node_id":"-199:data","from_node_id":"-175:data"},{"to_node_id":"-199:model","from_node_id":"-183:model"},{"to_node_id":"-292:options_data","from_node_id":"-199:predictions"},{"to_node_id":"-235:input_data","from_node_id":"-228:data"},{"to_node_id":"-183:training_ds","from_node_id":"-235:data"},{"to_node_id":"-228:data1","from_node_id":"-238:data"},{"to_node_id":"-175:input_data","from_node_id":"-312:data_1"}],"nodes":[{"node_id":"-134","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-134"}],"output_ports":[{"name":"data","node_id":"-134"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-191","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nbuy_condition=where((close_1/close_2>1.15),1,0)\nsell_condition=where((close_1/close_2<1.15),1,0)\n# ta_macd_macd_12_26_9_0/adjust_factor_0\n# ta_macd_macdsignal_12_26_9_0/adjust_factor_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-191"}],"output_ports":[{"name":"data","node_id":"-191"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"200","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-196"},{"name":"features","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-203","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-203"},{"name":"features","node_id":"-203"}],"output_ports":[{"name":"data","node_id":"-203"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-211","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-211"}],"output_ports":[{"name":"data_1","node_id":"-211"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-214","module_id":"BigQuantSpace.filter_delist_stocks.filter_delist_stocks-v3","parameters":[],"input_ports":[{"name":"input_1","node_id":"-214"}],"output_ports":[{"name":"data","node_id":"-214"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-144","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-06-08","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-144"}],"output_ports":[{"name":"data","node_id":"-144"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-153","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-06-01","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-153"},{"name":"features","node_id":"-153"}],"output_ports":[{"name":"data","node_id":"-153"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-160"},{"name":"features","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-175","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-175"},{"name":"features","node_id":"-175"}],"output_ports":[{"name":"data","node_id":"-175"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-183","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-183"},{"name":"features","node_id":"-183"},{"name":"test_ds","node_id":"-183"},{"name":"base_model","node_id":"-183"}],"output_ports":[{"name":"model","node_id":"-183"},{"name":"feature_gains","node_id":"-183"},{"name":"m_lazy_run","node_id":"-183"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-199","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"-199"},{"name":"data","node_id":"-199"}],"output_ports":[{"name":"predictions","node_id":"-199"},{"name":"m_lazy_run","node_id":"-199"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-228","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-228"},{"name":"data2","node_id":"-228"}],"output_ports":[{"name":"data","node_id":"-228"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-235","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-235"},{"name":"features","node_id":"-235"}],"output_ports":[{"name":"data","node_id":"-235"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-292","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-292"},{"name":"options_data","node_id":"-292"},{"name":"history_ds","node_id":"-292"},{"name":"benchmark_ds","node_id":"-292"},{"name":"trading_calendar","node_id":"-292"}],"output_ports":[{"name":"raw_perf","node_id":"-292"}],"cacheable":false,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-312","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-312"}],"output_ports":[{"name":"data_1","node_id":"-312"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-134' Position='-1059.1054382324219,-1360.9681396484375,200,200'/><node_position Node='-191' Position='-552,-1400.9840087890625,200,200'/><node_position Node='-196' Position='-770,-1240,200,200'/><node_position Node='-203' Position='-767,-1114,200,200'/><node_position Node='-211' Position='-772,-1003.0159912109375,200,200'/><node_position Node='-214' Position='-767.0159912109375,-901.920166015625,200,200'/><node_position Node='-144' Position='-292,-1226,200,200'/><node_position Node='-153' Position='-135,-1078,200,200'/><node_position Node='-160' Position='-293,-982,200,200'/><node_position Node='-175' Position='-366,-516,200,200'/><node_position Node='-183' Position='-1018,-430.92010498046875,200,200'/><node_position Node='-199' Position='-727,-312,200,200'/><node_position Node='-228' Position='-1027.191650390625,-689.1533203125,200,200'/><node_position Node='-235' Position='-1040.1278076171875,-547.7444152832031,200,200'/><node_position Node='-238' Position='-1097,-1155.9840087890625,200,200'/><node_position Node='-292' Position='-559,-169,200,200'/><node_position Node='-312' Position='-292,-898,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-06-10 12:27:01.557699] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-06-10 12:27:01.565093] INFO: moduleinvoker: 命中缓存
[2022-06-10 12:27:01.566599] INFO: moduleinvoker: instruments.v2 运行完成[0.008911s].
[2022-06-10 12:27:01.576142] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-06-10 12:27:01.589953] INFO: moduleinvoker: 命中缓存
[2022-06-10 12:27:01.591722] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.015589s].
[2022-06-10 12:27:01.597020] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-06-10 12:27:01.638494] INFO: moduleinvoker: input_features.v1 运行完成[0.041474s].
[2022-06-10 12:27:01.656621] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-06-10 12:27:04.500096] INFO: 基础特征抽取: 年份 2020, 特征行数=540554
[2022-06-10 12:27:07.617046] INFO: 基础特征抽取: 年份 2021, 特征行数=1061527
[2022-06-10 12:27:07.728197] INFO: 基础特征抽取: 总行数: 1602081
[2022-06-10 12:27:07.738816] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[6.0822s].
[2022-06-10 12:27:07.750211] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-06-10 12:27:10.813331] INFO: derived_feature_extractor: 提取完成 buy_condition=where((close_1/close_2>1.15),1,0), 0.021s
[2022-06-10 12:27:10.821930] INFO: derived_feature_extractor: 提取完成 sell_condition=where((close_1/close_2<1.15),1,0), 0.006s
[2022-06-10 12:27:11.881763] INFO: derived_feature_extractor: /y_2020, 540554
[2022-06-10 12:27:13.883331] INFO: derived_feature_extractor: /y_2021, 1061527
[2022-06-10 12:27:14.176878] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[6.426652s].
[2022-06-10 12:27:14.190865] INFO: moduleinvoker: filtet_st_stock.v7 开始运行..
[2022-06-10 12:27:17.085461] INFO: moduleinvoker: filtet_st_stock.v7 运行完成[2.894601s].
[2022-06-10 12:27:17.097314] INFO: moduleinvoker: filter_delist_stocks.v3 开始运行..
[2022-06-10 12:27:26.821432] INFO: moduleinvoker: filter_delist_stocks.v3 运行完成[9.724125s].
[2022-06-10 12:27:26.834552] INFO: moduleinvoker: join.v3 开始运行..
[2022-06-10 12:27:32.922427] INFO: join: /data, 行数=991606/1529265, 耗时=3.937096s
[2022-06-10 12:27:32.992034] INFO: join: 最终行数: 991606
[2022-06-10 12:27:33.002931] INFO: moduleinvoker: join.v3 运行完成[6.168395s].
[2022-06-10 12:27:33.012061] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-06-10 12:27:33.845861] INFO: dropnan: /data, 990685/991606
[2022-06-10 12:27:33.905770] INFO: dropnan: 行数: 990685/991606
[2022-06-10 12:27:33.921631] INFO: moduleinvoker: dropnan.v2 运行完成[0.909545s].
[2022-06-10 12:27:33.943580] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-06-10 12:27:34.518240] INFO: StockRanker: 特征预处理 ..
[2022-06-10 12:27:34.630229] INFO: StockRanker: prepare data: training ..
[2022-06-10 12:27:34.728240] INFO: StockRanker: sort ..
[2022-06-10 12:27:45.188903] INFO: StockRanker训练: a63e28b0 准备训练: 990685 行数
[2022-06-10 12:27:45.190830] INFO: StockRanker训练: AI模型训练,将在990685*2=198.14万数据上对模型训练进行20轮迭代训练。预计将需要2~3分钟。请耐心等待。
[2022-06-10 12:27:45.457491] INFO: StockRanker训练: 正在训练 ..
[2022-06-10 12:27:45.504960] INFO: StockRanker训练: 任务状态: Pending
[2022-06-10 12:27:55.551290] INFO: StockRanker训练: 任务状态: Running
[2022-06-10 12:28:55.834782] INFO: StockRanker训练: 任务状态: Succeeded
[2022-06-10 12:28:55.846050] ERROR: moduleinvoker: module name: stock_ranker_train, module version: v6, trackeback: Exception: 模型训练失败:可能导致错误的原因是训练数据问题,请检查训练数据, err_code=1 (a63e28b0e87511eca7045a3246ee9563)
---------------------------------------------------------------------------
Exception Traceback (most recent call last)
<ipython-input-25-d1098a0c7b19> in <module>
151 )
152
--> 153 m2 = M.stock_ranker_train.v6(
154 training_ds=m21.data,
155 features=m3.data,
Exception: 模型训练失败:可能导致错误的原因是训练数据问题,请检查训练数据, err_code=1 (a63e28b0e87511eca7045a3246ee9563)