{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-234:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-550:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-575:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-228:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-228:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-235:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-235:input_data","from_node_id":"-228:data"},{"to_node_id":"-253:data1","from_node_id":"-234:data"},{"to_node_id":"-582:data1","from_node_id":"-253:data"},{"to_node_id":"-253:data2","from_node_id":"-235:data"},{"to_node_id":"-234:features","from_node_id":"-270:data"},{"to_node_id":"-123:benchmark_ds","from_node_id":"-550:data_1"},{"to_node_id":"-575:features","from_node_id":"-570:data"},{"to_node_id":"-582:data2","from_node_id":"-575:data"},{"to_node_id":"-121:input_1","from_node_id":"-582:data"},{"to_node_id":"-4852:input_1","from_node_id":"-297:data_1"},{"to_node_id":"-297:input_1","from_node_id":"-121:data"},{"to_node_id":"-123:instruments","from_node_id":"-4852:data_1"},{"to_node_id":"-123:options_data","from_node_id":"-4852:data_2"},{"to_node_id":"-123:history_ds","from_node_id":"-4852:data_3"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2016-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\nin_csi300_0\nin_csi500_0\nin_sse50_0\nindustry_sw_level1_0\nst_status_0\n\n# 选股条件\ncond1=(turn_0>0.03)&\\\n(ta_macd(close_0/adjust_factor_0, fastperiod=12, slowperiod=26, signalperiod=26, derive='golden_cross'))&\\\n(ta_kdj(high_0/adjust_factor_0, low_0/adjust_factor_0, close_0/adjust_factor_0, N=9, M1=3, M2=3, derive='golden_cross'))&\\\n(ta_ema(close_0/adjust_factor_0, shorttimeperiod=5, longtimeperiod=10, derive='golden_cross'))&\\\n(ta_trix(close_0/adjust_factor_0, timeperiod=60, matrix_timeperiod=5, derive='golden_cross'))&\\\n(mf_net_amount_main_0>20000000)&\\\n(mf_net_pct_main_0>0.03)\n\n# 排序选股\ncond2=1\n\n# 进场条件\ncond3=1\n \n# 卖出条件\ncond4=(ta_macd(close_0/adjust_factor_0, fastperiod=12, slowperiod=26, signalperiod=26, derive='short'))&\\\n(ta_kdj(high_0/adjust_factor_0, low_0/adjust_factor_0, close_0/adjust_factor_0, N=9, M1=3, M2=3, derive='sell'))&\\\n(ta_ema(close_0/adjust_factor_0, shorttimeperiod=5, longtimeperiod=10, derive='short'))&\\\n(ta_trix(close_0/adjust_factor_0, timeperiod=60, matrix_timeperiod=5, derive='short'))&\\\n(ta_rsi(close_0/adjust_factor_0, timeperiod=14)>90)&\\\n(ta_dark_cloud_cover(high_0/adjust_factor_0, low_0/adjust_factor_0, close_0/adjust_factor_0, open_0/adjust_factor_0))&\\\n(ta_hammer(high_0/adjust_factor_0, low_0/adjust_factor_0, close_0/adjust_factor_0, open_0/adjust_factor_0))&\\\n(mf_net_pct_s_0>0.1)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-228","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"300","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-228"},{"name":"features","node_id":"-228"}],"output_ports":[{"name":"data","node_id":"-228"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-234","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"industry_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-234"},{"name":"features","node_id":"-234"}],"output_ports":[{"name":"data","node_id":"-234"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-253","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-253"},{"name":"data2","node_id":"-253"}],"output_ports":[{"name":"data","node_id":"-253"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-235","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-235"},{"name":"features","node_id":"-235"}],"output_ports":[{"name":"data","node_id":"-235"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-270","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"concept\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-270"}],"output_ports":[{"name":"data","node_id":"-270"}],"cacheable":true,"seq_num":10,"comment":"获取股票概念,并匹配选中的概念","comment_collapsed":false},{"node_id":"-123","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"\ndef prepare_index_data(context):\n \"\"\"准备指数数据\"\"\"\n if context.market_risk_conf != []:\n if len(context.market_risk_conf) == 1:\n index_code = context.market_risk_conf[0]['params']['index_code']\n start_date = '2005-01-01'\n end_date = context.end_date\n index_data = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code], start_date=start_date, end_date=end_date).set_index('date')\n \n if context.market_risk_conf[0]['method'] == 'market_ma_stoploss':\n ma_periods = int(context.market_risk_conf[0]['params']['ma_periods'])\n index_data['ma_%s'%ma_periods] = index_data['close'].rolling(ma_periods).mean()\n index_data['signal'] = np.where(index_data['close'] > index_data['ma_%s'%ma_periods], 'long', 'short')\n\n elif context.market_risk_conf[0]['method'] == 'market_fallrange_stoploss':\n days = context.market_risk_conf[0]['params']['days']\n fallrange = context.market_risk_conf[0]['params']['fallrange']\n index_data['signal'] = np.where(index_data['close']/index_data['close'].shift(days)-1 <= fallrange, 'long', 'short')\n context.index_signal_data = index_data \n \n if len(context.market_risk_conf) == 2:\n start_date = '2005-01-01'\n end_date = context.end_date \n if context.market_risk_conf[0]['method'] == 'market_ma_stoploss': \n index_code_1 = context.market_risk_conf[0]['params']['index_code']\n index_data_1 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_1], start_date=start_date, end_date=end_date).set_index('date')\n ma_periods = int(context.market_risk_conf[0]['params']['ma_periods'])\n \n index_code_2 = context.market_risk_conf[1]['params']['index_code']\n index_data_2 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_2], start_date=start_date, end_date=end_date).set_index('date')\n days = context.market_risk_conf[1]['params']['days']\n fallrange = context.market_risk_conf[1]['params']['fallrange']\n else:\n index_code_1 = context.market_risk_conf[1]['params']['index_code']\n index_data_1 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_1], start_date=start_date, end_date=end_date).set_index('date')\n ma_periods = int(context.market_risk_conf[1]['params']['ma_periods'])\n \n index_code_2 = context.market_risk_conf[0]['params']['index_code']\n index_data_2 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_2], start_date=start_date, end_date=end_date).set_index('date')\n days = context.market_risk_conf[0]['params']['days']\n fallrange = context.market_risk_conf[0]['params']['fallrange'] \n \n index_data_1['ma_%s'%ma_periods] = index_data_1['close'].rolling(ma_periods).mean()\n index_data_1['signal_1'] = np.where(index_data_1['close'] > index_data_1['ma_%s'%ma_periods], 1, 0)\n signal_1 = index_data_1[['signal_1']].reset_index() \n index_data_2['signal_2'] = np.where(index_data_2['close']/index_data_2['close'].shift(days)-1 <= fallrange, 1, 0)\n signal_2 = index_data_2[['signal_2']].reset_index()\n signal = pd.merge(signal_1,signal_2).set_index('date')\n signal['signal_sum'] = signal['signal_1'] + signal['signal_2']\n signal['signal'] = np.where(signal['signal_sum']>0,'long','short') \n context.index_signal_data = signal\n else:\n context.index_signal_data = None \n\ndef bigquant_run(context):\n context.set_commission(PerOrder(buy_cost=0.003, sell_cost=0.004, min_cost=5))\n \n context.trade_mode = '择时'\n\n if context.trade_mode == '轮动':\n context.buy_frequency = 1\n context.sell_frequency = 1\n context.rebalance_periods = 1 # 调仓周期\n context.max_stock_count = 5 # 最大持仓股票数量\n context.order_weight_method = 'equal_weight' # 买入方式\n context.is_sell_willbuy_stock = False # 卖出欲买进股票 \n else:\n # 买入条件参数\n context.stock_select_frequency = 1 # 选股频率\n context.order_weight_method = 'equal_weight' # 买入方式\n context.buy_frequency = 2 # 买入频率\n context.can_duplication_buy = False # 是否可重复买入\n context.max_stock_count = 6 # 最大持仓股票数量\n context.max_stock_weight = 0.05 # 个股最大持仓比重\n\n # 卖出条件参数\n context.sell_frequency = 10 # 卖出频率\n context.is_sell_willbuy_stock = False # 卖出欲买进股票 \n\n # 风控参数 \n context.stock_risk_conf = [{'method':'stock_percent_stopwin', 'params':{'percent': 1}}, {'method':'stock_percent_stoploss', 'params':{'percent': 0.06}}] # 支持多选 无:[]\n context.strategy_risk_conf = [{'method':'strategy_percent_stopwin', 'params':{'percent': 9}}, {'method':'strategy_percent_stoploss', 'params':{'percent': 0.07}}] # 支持多选 无:[]\n context.market_risk_conf = [{'method':'market_fallrange_stoploss', 'params':{'days':10,'fallrange':0.15,'index_code':'000300.HIX'}}] # 支持多选, 无: []\n \n prepare_index_data(context)\n slippage_type = 'price'\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n # 指定初始化函数\n def __init__(self, spreads, price_field_buy, price_field_sell):\n # 存储spread的字典,用股票代码作为key\n self.spreads = spreads\n self._price_field_buy = price_field_buy\n self._price_field_sell = price_field_sell\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price_base = data.current(order.asset, price_field)\n if slippage_type == 'price':\n price = price_base + (self.spreads / 2) if order.amount > 0 else price_base - (self.spreads / 2)\n else:\n price = price_base * (1.0 + self.spreads / 2) if order.amount > 0 else price_base * (1.0 - self.spreads / 2)\n else:\n price = order.limit\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field\n fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='open', spreads=0.02)\n context.set_slippage(us_equities=fix_slippage)","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"#--------------------------------------------------------------------\n# 卖出条件\n#-------------------------------------------------------------------- \ndef sell_action(context, data):\n date = data.current_dt.strftime('%Y-%m-%d')\n hit_stop_stock = context.stock_hit_stop \n \n try:\n today_enter_stock = context.enter_daily_df.loc[date] \n except KeyError as e:\n today_enter_stock = []\n try:\n today_exit_stock = context.exit_daily_df.loc[date] \n except KeyError as e:\n today_exit_stock = []\n \n target_stock_to_buy = [i for i in context.selected_stock if i in today_enter_stock ] \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] # 当前持仓股票\n \n if context.trading_day_index % context.sell_frequency == 0:\n stock_to_sell = [i for i in stock_hold_now if i in today_exit_stock] # 要卖出的股票\n stock_buy_and_sell = [i for i in stock_to_sell if i in target_stock_to_buy]\n if context.is_sell_willbuy_stock == False: # 要买入的股票不卖出,但该票也不再买入\n stock_to_sell.extend(hit_stop_stock) # 将触发个股风控的股票融入到卖出票池\n stock_to_sell = [i for i in stock_to_sell if i not in stock_buy_and_sell] # 进行更新而已\n elif context.is_sell_willbuy_stock == True: # 要买入的股票依然要卖出,该票不再买入\n stock_to_sell.extend(hit_stop_stock)\n \n # 买入时需要过滤的股票\n context.cannot_buy_stock = stock_buy_and_sell\n \n for stock in stock_to_sell:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0)\n del context.portfolio.positions[context.symbol(stock)]\n\n\n#--------------------------------------------------------------------\n# 买入条件\n#-------------------------------------------------------------------- \ndef buy_action(context, data):\n date = data.current_dt.strftime('%Y-%m-%d')\n \n try:\n today_enter_stock = context.enter_daily_df.loc[date] \n except KeyError as e:\n today_enter_stock = []\n try:\n today_exit_stock = context.exit_daily_df.loc[date] \n except KeyError as e:\n today_exit_stock = []\n \n target_stock_to_buy = [i for i in context.selected_stock if i in today_enter_stock] \n target_stock_to_buy = [s for s in target_stock_to_buy if s not in context.cannot_buy_stock] # 进行更新,不能买入的股票要过滤\n \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] # 当前持仓股票\n \n # 确定股票权重\n if context.order_weight_method == 'equal_weight':\n equal_weight = 1 / context.max_stock_count\n \n portfolio_value = context.portfolio.portfolio_value\n position_current_value = {pos.sid: pos.amount* pos.last_sale_price for i,pos in context.portfolio.positions.items()}\n \n # 买入\n if context.trading_day_index % context.buy_frequency == 0:\n if len(stock_hold_now) >= context.max_stock_count:\n return \n \n today_buy_count = 0\n if context.trade_mode == '轮动':\n for s in target_stock_to_buy:\n if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量\n break\n if data.can_trade(context.symbol(s)):\n order_target_percent(context.symbol(s), equal_weight)\n today_buy_count += 1\n else:\n if context.can_duplication_buy == True: # 可以重复买入,多一份买入\n for s in target_stock_to_buy:\n if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量\n break\n \n if data.can_trade(context.symbol(s)):\n if context.symbol(s) in position_current_weight:\n curr_value = position_current_value.get(context.symbol(s)) \n order_value(context.symbol(s), min(context.max_stock_weight * portfolio_value - curr_value, equal_weight*portfolio_value))\n else:\n order_value(context.symbol(s), equal_weight*portfolio_value)\n today_buy_count += 1\n\n elif context.can_duplication_buy == False: # 不可以重复买入,不买\n for s in target_stock_to_buy:\n if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量\n break\n if s in stock_hold_now:\n continue\n else:\n if data.can_trade(context.symbol(s)):\n order_target_percent(context.symbol(s), equal_weight)\n today_buy_count += 1\n\n \n#--------------------------------------------------------------------\n# 风控体系\n#-------------------------------------------------------------------- \ndef market_risk_manage(context, data):\n \"\"\"大盘风控\"\"\"\n date = data.current_dt.strftime('%Y-%m-%d')\n if type(context.index_signal_data) == pd.DataFrame:\n current_signal = context.index_signal_data.loc[date]['signal']\n if current_signal == 'short': \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] \n # 平掉所有股票\n for stock in stock_hold_now:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0) \n print('大盘出现止损信号, 平掉全部仓位,并关闭交易!')\n context.market_risk_signal = 'short'\n else:\n context.market_risk_signal = 'long'\n\n \n \ndef strategy_risk_manage(context, data):\n \"\"\"策略风控\"\"\"\n if context.strategy_risk_conf == []: # 没有设置策略风控\n context.strategy_risk_signal = 'long'\n \n else:\n for rm in context.strategy_risk_conf:\n if rm['method'] == 'strategy_percent_stopwin':\n pct = rm['params']['percent']\n portfolio_value = context.portfolio.portfolio_value \n if portfolio_value / context.capital_base - 1 > pct: \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] \n # 平掉所有股票\n for stock in stock_hold_now:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0) \n print('策略出现止盈信号, 平掉全部仓位,并关闭交易!')\n context.strategy_risk_signal = 'short' \n \n \n if rm['method'] == 'strategy_percent_stoploss':\n pct = rm['params']['percent']\n portfolio_value = context.portfolio.portfolio_value \n if portfolio_value / context.capital_base -1 < pct:\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] \n # 平掉所有股票\n for stock in stock_hold_now:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0) \n print('策略出现止损信号, 平掉全部仓位,并关闭交易!')\n context.strategy_risk_signal = 'short'\n\n \ndef stock_risk_manage(context, data):\n \"\"\"个股风控\"\"\"\n position_current_pnl = {pos.sid: (pos.last_sale_price-pos.cost_basis)/pos.cost_basis for i,pos in context.portfolio.positions.items()}\n \n for rm in context.stock_risk_conf:\n params_pct = rm['params']['percent']\n if rm['method'] == 'stock_percent_stopwin':\n for sid,pnl_pct in position_current_pnl.items(): \n if pnl_pct > params_pct:\n context.stock_hit_stop.append(sid.symbol)\n \n if rm['method'] == 'stock_percent_stoploss':\n for sid,pnl_pct in position_current_pnl.items():\n if pnl_pct < params_pct:\n context.stock_hit_stop.append(sid.symbol)\n\n\n\n\n# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \"\"\"每日运行策略逻辑\"\"\"\n market_risk_manage(context, data)\n strategy_risk_manage(context, data)\n \n if context.market_risk_signal == 'short': return\n if context.strategy_risk_signal == 'short': return\n\n stock_risk_manage(context, data)\n \n sell_action(context, data)\n buy_action(context, data)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n \n load_data = context.options['data'].read_pickle()\n context.signal_daily_stock = load_data['df1'].groupby('date').apply(lambda x:list(x.instrument))\n context.enter_daily_df = load_data['df2'].groupby('date').apply(lambda x:list(x.instrument))\n context.exit_daily_df = load_data['df3'].groupby('date').apply(lambda x:list(x.instrument))\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n \n \"\"\"每日盘前更新股票池\"\"\"\n frequency = context.rebalance_periods if context.trade_mode == '轮动' else context.stock_select_frequency\n if context.trading_day_index % frequency == 0:\n date = data.current_dt.strftime('%Y-%m-%d')\n try:\n context.selected_stock = context.signal_daily_stock[date] \n except KeyError as e:\n context.selected_stock = []\n \n \"\"\"初始化风控参数\"\"\"\n context.strategy_risk_signal = 'long'\n context.market_risk_signal = 'long' \n context.stock_hit_stop = []\n context.cannot_buy_stock = []\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-123"},{"name":"options_data","node_id":"-123"},{"name":"history_ds","node_id":"-123"},{"name":"benchmark_ds","node_id":"-123"},{"name":"trading_calendar","node_id":"-123"}],"output_ports":[{"name":"raw_perf","node_id":"-123"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-550","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_index):\n # 示例代码如下。在这里编写您的代码\n start_date=input_1.read_pickle()['start_date']\n end_date=input_1.read_pickle()['end_date']\n df = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[input_index],start_date=start_date,end_date=end_date,fields=['close'])\n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"input_1","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{'input_index':'000300.HIX'}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"data_1","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-550"},{"name":"input_2","node_id":"-550"},{"name":"input_3","node_id":"-550"}],"output_ports":[{"name":"data_1","node_id":"-550"},{"name":"data_2","node_id":"-550"},{"name":"data_3","node_id":"-550"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-570","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"suspended","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-570"}],"output_ports":[{"name":"data","node_id":"-570"}],"cacheable":true,"seq_num":6,"comment":"获取股票停牌数据","comment_collapsed":false},{"node_id":"-575","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"stock_status_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-575"},{"name":"features","node_id":"-575"}],"output_ports":[{"name":"data","node_id":"-575"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-582","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-582"},{"name":"data2","node_id":"-582"}],"output_ports":[{"name":"data","node_id":"-582"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-297","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n # 缺失值处理\n # if len(df)!=0:\n # df.dropna(inplace=True)\n \n # 选股条件\n if len(df)!=0:\n df_filter1 = df[df['cond1']>0]\n else:\n df_filter1 = df\n \n # 指标排序\n if len(df_filter1)!=0:\n df_filter2 = df_filter1.groupby('date').apply(lambda x:x.sort_values(by=['cond2'],ascending=True))\n else:\n df_filter2 = df_filter1\n \n #输出条件过滤股票池\n data_1 = DataSource.write_df(df_filter2)\n\n \n # 进场条件\n if len(df)!=0:\n df_buy = df[df['cond3']>0]\n else:\n df_buy = df\n # 输出满足进场条件的股票池\n data_2 = DataSource.write_df(df_buy)\n\n \n # 出场条件\n if len(df)!=0:\n df_sell = df[df['cond4']>0]\n else:\n df_sell = df\n # 输出满足出场条件的股票池\n data_3 = DataSource.write_df(df_sell) \n \n return Outputs(data_1=data_1, data_2=data_2, data_3=data_3)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-297"},{"name":"input_2","node_id":"-297"},{"name":"input_3","node_id":"-297"}],"output_ports":[{"name":"data_1","node_id":"-297"},{"name":"data_2","node_id":"-297"},{"name":"data_3","node_id":"-297"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-121","module_id":"BigQuantSpace.stockpool_select.stockpool_select-v6","parameters":[{"name":"self_instruments","value":"[]","type":"Literal","bound_global_parameter":null},{"name":"input_concepts","value":"[]","type":"Literal","bound_global_parameter":null},{"name":"input_industrys","value":"[360000,710000,220000,460000,370000,330000,340000,720000,240000,630000,280000,420000,510000,640000,610000,620000,650000,230000,410000,350000,490000,110000,210000,480000,730000,450000,270000,430000]","type":"Literal","bound_global_parameter":null},{"name":"input_indexs","value":"['沪深300']","type":"Literal","bound_global_parameter":null},{"name":"input_st","value":"过滤","type":"Literal","bound_global_parameter":null},{"name":"input_suspend","value":"过滤","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-121"}],"output_ports":[{"name":"data","node_id":"-121"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-4852","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df1 = input_1.read_df\n df2 = input_2.read_df\n df3 = input_3.read_df\n \n df1.index.names = [None, None]\n \n df = {'df1':df1,'df2':df2,'df3':df3}\n ds = DataSource.write_pickle(df)\n return Outputs(data_1=ds)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"data_1, data_2, data_3","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-4852"},{"name":"input_2","node_id":"-4852"},{"name":"input_3","node_id":"-4852"}],"output_ports":[{"name":"data_1","node_id":"-4852"},{"name":"data_2","node_id":"-4852"},{"name":"data_3","node_id":"-4852"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-185","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df1 = input_1.read_df(1)\n df2 = input_2.read_df(2)\n df3 = input_3.read_df(3)\n \n df1.index.names = [None, None]\n \n df = {'df1':df1,'df2':df2,'df3':df3}\n ds = DataSource.write_pickle(df)\n return Outputs(data_1=ds)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-185"},{"name":"input_2","node_id":"-185"},{"name":"input_3","node_id":"-185"}],"output_ports":[{"name":"data_1","node_id":"-185"},{"name":"data_2","node_id":"-185"},{"name":"data_3","node_id":"-185"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='473,-148,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='697,-231,200,200'/><node_position Node='-228' Position='479,-22,200,200'/><node_position Node='-234' Position='145,-30,200,200'/><node_position Node='-253' Position='341,161,200,200'/><node_position Node='-235' Position='483,70,200,200'/><node_position Node='-270' Position='124,-149,200,200'/><node_position Node='-123' Position='563,687,200,200'/><node_position Node='-550' Position='878,511,200,200'/><node_position Node='-570' Position='960,-137,200,200'/><node_position Node='-575' Position='840,-16,200,200'/><node_position Node='-582' Position='557,241,200,200'/><node_position Node='-297' Position='451.2432861328125,456.7567138671875,200,200'/><node_position Node='-121' Position='457,355,200,200'/><node_position Node='-4852' Position='445.0018081665039,554.3255920410156,200,200'/><node_position Node='-185' Position='14.822860717773438,437.97674560546875,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-13 20:40:14.405227] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-13 20:40:14.414013] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.416895] INFO: moduleinvoker: instruments.v2 运行完成[0.011667s].
[2021-12-13 20:40:14.423599] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-13 20:40:14.435663] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.437468] INFO: moduleinvoker: input_features.v1 运行完成[0.013876s].
[2021-12-13 20:40:14.457112] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-13 20:40:14.476035] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.477823] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.020733s].
[2021-12-13 20:40:14.487271] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-13 20:40:14.507488] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.509247] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.021984s].
[2021-12-13 20:40:14.514321] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-13 20:40:14.530888] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.533045] INFO: moduleinvoker: input_features.v1 运行完成[0.018724s].
[2021-12-13 20:40:14.545486] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2021-12-13 20:40:14.560164] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.562549] INFO: moduleinvoker: use_datasource.v1 运行完成[0.017078s].
[2021-12-13 20:40:14.575199] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-13 20:40:14.592432] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.594127] INFO: moduleinvoker: join.v3 运行完成[0.018935s].
[2021-12-13 20:40:14.599709] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-13 20:40:14.609493] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.611015] INFO: moduleinvoker: input_features.v1 运行完成[0.011329s].
[2021-12-13 20:40:14.616683] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2021-12-13 20:40:14.633446] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.635112] INFO: moduleinvoker: use_datasource.v1 运行完成[0.01844s].
[2021-12-13 20:40:14.647125] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-13 20:40:14.658871] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.660487] INFO: moduleinvoker: join.v3 运行完成[0.013362s].
[2021-12-13 20:40:14.666142] INFO: moduleinvoker: stockpool_select.v6 开始运行..
[2021-12-13 20:40:14.678050] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.681342] INFO: moduleinvoker: stockpool_select.v6 运行完成[0.015174s].
[2021-12-13 20:40:14.701718] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-13 20:40:14.733588] INFO: moduleinvoker: 命中缓存
[2021-12-13 20:40:14.736081] INFO: moduleinvoker: cached.v3 运行完成[0.034372s].