{"description":"实验创建于2022/11/5","graph":{"edges":[{"to_node_id":"-24:instruments","from_node_id":"-4:data"},{"to_node_id":"-35:instruments","from_node_id":"-4:data"},{"to_node_id":"-35:features","from_node_id":"-12:data"},{"to_node_id":"-62:features","from_node_id":"-12:data"},{"to_node_id":"-69:features","from_node_id":"-12:data"},{"to_node_id":"-42:features","from_node_id":"-12:data"},{"to_node_id":"-252:features","from_node_id":"-12:data"},{"to_node_id":"-62:instruments","from_node_id":"-16:data"},{"to_node_id":"-117:instruments","from_node_id":"-16:data"},{"to_node_id":"-51:data1","from_node_id":"-24:data"},{"to_node_id":"-42:input_data","from_node_id":"-35:data"},{"to_node_id":"-51:data2","from_node_id":"-42:data"},{"to_node_id":"-58:input_data","from_node_id":"-51:data"},{"to_node_id":"-252:training_ds","from_node_id":"-58:data"},{"to_node_id":"-69:input_data","from_node_id":"-62:data"},{"to_node_id":"-78:input_data","from_node_id":"-69:data"},{"to_node_id":"-252:predict_ds","from_node_id":"-78:data"},{"to_node_id":"-117:options_data","from_node_id":"-252:predictions"}],"nodes":[{"node_id":"-4","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2011-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-4"}],"output_ports":[{"name":"data","node_id":"-4"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-12","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-12"}],"output_ports":[{"name":"data","node_id":"-12"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-16","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-16"}],"output_ports":[{"name":"data","node_id":"-16"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-24","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n# shift(close, -5) / shift(open, -1)\nwhere(shift(close,-5) / shift(open,-1)>1,1,0)\n\n# 极值处理:用1%和99%分位的值做clip\n# clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n# all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-24"}],"output_ports":[{"name":"data","node_id":"-24"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-35","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-35"},{"name":"features","node_id":"-35"}],"output_ports":[{"name":"data","node_id":"-35"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-42","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-42"},{"name":"features","node_id":"-42"}],"output_ports":[{"name":"data","node_id":"-42"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-51","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-51"},{"name":"data2","node_id":"-51"}],"output_ports":[{"name":"data","node_id":"-51"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-58","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-58"},{"name":"features","node_id":"-58"}],"output_ports":[{"name":"data","node_id":"-58"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-62","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-62"},{"name":"features","node_id":"-62"}],"output_ports":[{"name":"data","node_id":"-62"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-69","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-69"},{"name":"features","node_id":"-69"}],"output_ports":[{"name":"data","node_id":"-69"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-78","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-78"},{"name":"features","node_id":"-78"}],"output_ports":[{"name":"data","node_id":"-78"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-252","module_id":"BigQuantSpace.stock_ranker.stock_ranker-v2","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"slim_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-252"},{"name":"features","node_id":"-252"},{"name":"base_model","node_id":"-252"},{"name":"test_ds","node_id":"-252"},{"name":"input_model","node_id":"-252"},{"name":"predict_ds","node_id":"-252"}],"output_ports":[{"name":"model","node_id":"-252"},{"name":"predictions","node_id":"-252"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-117","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-117"},{"name":"options_data","node_id":"-117"},{"name":"history_ds","node_id":"-117"},{"name":"benchmark_ds","node_id":"-117"},{"name":"trading_calendar","node_id":"-117"}],"output_ports":[{"name":"raw_perf","node_id":"-117"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-4' Position='72,80,200,200'/><node_position Node='-12' Position='456,-43,200,200'/><node_position Node='-16' Position='704,86,200,200'/><node_position Node='-24' Position='73,182,200,200'/><node_position Node='-35' Position='325,190,200,200'/><node_position Node='-42' Position='399,311,200,200'/><node_position Node='-51' Position='114,409,200,200'/><node_position Node='-58' Position='118,490,200,200'/><node_position Node='-62' Position='717,188,200,200'/><node_position Node='-69' Position='746,314,200,200'/><node_position Node='-78' Position='714,405,200,200'/><node_position Node='-252' Position='323,566,200,200'/><node_position Node='-117' Position='353.998779296875,725.0331420898438,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-11-07 20:22:52.772875] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-11-07 20:22:52.781857] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:52.784124] INFO: moduleinvoker: instruments.v2 运行完成[0.011257s].
[2022-11-07 20:22:52.799276] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-11-07 20:22:52.813859] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:52.816717] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.017475s].
[2022-11-07 20:22:52.824297] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-11-07 20:22:52.835125] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:52.838075] INFO: moduleinvoker: input_features.v1 运行完成[0.013789s].
[2022-11-07 20:22:52.928459] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-11-07 20:22:52.939855] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:52.942697] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.01425s].
[2022-11-07 20:22:52.953600] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-11-07 20:22:52.972506] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:52.975543] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.021934s].
[2022-11-07 20:22:52.988650] INFO: moduleinvoker: join.v3 开始运行..
[2022-11-07 20:22:53.018629] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:53.021035] INFO: moduleinvoker: join.v3 运行完成[0.032387s].
[2022-11-07 20:22:53.032522] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-11-07 20:22:53.046275] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:53.048654] INFO: moduleinvoker: dropnan.v2 运行完成[0.016134s].
[2022-11-07 20:22:53.059441] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-11-07 20:22:53.070795] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:53.073868] INFO: moduleinvoker: instruments.v2 运行完成[0.014422s].
[2022-11-07 20:22:53.097533] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-11-07 20:22:53.106518] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:53.109423] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.011904s].
[2022-11-07 20:22:53.118962] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-11-07 20:22:53.131851] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:53.134710] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.015708s].
[2022-11-07 20:22:53.145583] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-11-07 20:22:53.154355] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:53.156929] INFO: moduleinvoker: dropnan.v2 运行完成[0.011346s].
[2022-11-07 20:22:53.168037] INFO: moduleinvoker: stock_ranker.v2 开始运行..
[2022-11-07 20:22:53.187609] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:53.292608] INFO: moduleinvoker: stock_ranker.v2 运行完成[0.124555s].
[2022-11-07 20:22:53.379136] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-11-07 20:22:53.386882] INFO: backtest: biglearning backtest:V8.6.3
[2022-11-07 20:22:53.389381] INFO: backtest: product_type:stock by specified
[2022-11-07 20:22:53.554384] INFO: moduleinvoker: cached.v2 开始运行..
[2022-11-07 20:22:53.568913] INFO: moduleinvoker: 命中缓存
[2022-11-07 20:22:53.572010] INFO: moduleinvoker: cached.v2 运行完成[0.017641s].
[2022-11-07 20:23:08.558283] INFO: backtest: algo history_data=DataSource(e03d97b804eb43a69b4cf22925e1d215T)
[2022-11-07 20:23:08.561032] INFO: algo: TradingAlgorithm V1.8.8
[2022-11-07 20:23:13.274913] INFO: algo: trading transform...
[2022-11-07 20:23:16.343733] INFO: algo: handle_splits get splits [dt:2016-04-06 00:00:00+00:00] [asset:Equity(1678 [002503.SZA]), ratio:0.7680311799049377]
[2022-11-07 20:23:16.864943] INFO: algo: handle_splits get splits [dt:2016-04-21 00:00:00+00:00] [asset:Equity(1847 [300410.SZA]), ratio:0.998920738697052]
[2022-11-07 20:23:16.867663] INFO: Position: position stock handle split[sid:1847, orig_amount:2100, new_amount:2102.0, orig_cost:35.000000213273566, new_cost:34.9622, ratio:0.998920738697052, last_sale_price:37.02000427246094]
[2022-11-07 20:23:16.870582] INFO: Position: after split: PositionStock(asset:Equity(1847 [300410.SZA]), amount:2102.0, cost_basis:34.9622, last_sale_price:37.060001373291016)
[2022-11-07 20:23:16.872943] INFO: Position: returning cash: 9.9546
[2022-11-07 20:23:18.190715] INFO: algo: handle_splits get splits [dt:2016-06-06 00:00:00+00:00] [asset:Equity(2477 [000582.SZA]), ratio:0.9963370561599731]
[2022-11-07 20:23:18.192597] INFO: Position: position stock handle split[sid:2477, orig_amount:4800, new_amount:4817.0, orig_cost:17.850002311534094, new_cost:17.7846, ratio:0.9963370561599731, last_sale_price:16.31999969482422]
[2022-11-07 20:23:18.194163] INFO: Position: after split: PositionStock(asset:Equity(2477 [000582.SZA]), amount:4817.0, cost_basis:17.7846, last_sale_price:16.3799991607666)
[2022-11-07 20:23:18.195812] INFO: Position: returning cash: 10.5553
[2022-11-07 20:23:18.767717] INFO: algo: handle_splits get splits [dt:2016-06-28 00:00:00+00:00] [asset:Equity(2644 [000027.SZA]), ratio:0.9694189429283142]
[2022-11-07 20:23:19.207492] INFO: algo: handle_splits get splits [dt:2016-07-12 00:00:00+00:00] [asset:Equity(1380 [600791.SHA]), ratio:0.99717116355896]
[2022-11-07 20:23:19.209753] INFO: Position: position stock handle split[sid:1380, orig_amount:9000, new_amount:9025.0, orig_cost:6.940000840132148, new_cost:6.9204, ratio:0.99717116355896, last_sale_price:7.050000190734863]
[2022-11-07 20:23:19.211478] INFO: Position: after split: PositionStock(asset:Equity(1380 [600791.SHA]), amount:9025.0, cost_basis:6.9204, last_sale_price:7.070000171661377)
[2022-11-07 20:23:19.213122] INFO: Position: returning cash: 3.7489
[2022-11-07 20:23:27.486612] INFO: algo: handle_splits get splits [dt:2017-05-31 00:00:00+00:00] [asset:Equity(3422 [300384.SZA]), ratio:0.9931263327598572]
[2022-11-07 20:23:27.489153] INFO: Position: position stock handle split[sid:3422, orig_amount:1400, new_amount:1409.0, orig_cost:39.48002458345653, new_cost:39.2087, ratio:0.9931263327598572, last_sale_price:39.01000213623047]
[2022-11-07 20:23:27.491039] INFO: Position: after split: PositionStock(asset:Equity(3422 [300384.SZA]), amount:1409.0, cost_basis:39.2087, last_sale_price:39.279998779296875)
[2022-11-07 20:23:27.492876] INFO: Position: returning cash: 26.9067
[2022-11-07 20:23:27.802017] INFO: algo: handle_splits get splits [dt:2017-06-12 00:00:00+00:00] [asset:Equity(3687 [002275.SZA]), ratio:0.9776158332824707]
[2022-11-07 20:23:27.966347] INFO: algo: handle_splits get splits [dt:2017-06-19 00:00:00+00:00] [asset:Equity(1570 [300265.SZA]), ratio:0.9957912564277649]
[2022-11-07 20:23:27.968339] INFO: Position: position stock handle split[sid:1570, orig_amount:3800, new_amount:3816.0, orig_cost:11.18999999787672, new_cost:11.1429, ratio:0.9957912564277649, last_sale_price:11.829998970031738]
[2022-11-07 20:23:27.970084] INFO: Position: after split: PositionStock(asset:Equity(1570 [300265.SZA]), amount:3816.0, cost_basis:11.1429, last_sale_price:11.879999160766602)
[2022-11-07 20:23:27.971337] INFO: Position: returning cash: 0.7195
[2022-11-07 20:23:28.448197] INFO: algo: handle_splits get splits [dt:2017-07-06 00:00:00+00:00] [asset:Equity(2916 [603116.SHA]), ratio:0.9864495992660522]
[2022-11-07 20:23:28.451092] INFO: Position: position stock handle split[sid:2916, orig_amount:2100, new_amount:2128.0, orig_cost:18.47000286870398, new_cost:18.2197, ratio:0.9864495992660522, last_sale_price:18.199995040893555]
[2022-11-07 20:23:28.453554] INFO: Position: after split: PositionStock(asset:Equity(2916 [603116.SHA]), amount:2128.0, cost_basis:18.2197, last_sale_price:18.450000762939453)
[2022-11-07 20:23:28.455187] INFO: Position: returning cash: 15.4104
[2022-11-07 20:23:28.789614] INFO: algo: handle_splits get splits [dt:2017-07-18 00:00:00+00:00] [asset:Equity(3434 [300522.SZA]), ratio:0.5523555874824524]
[2022-11-07 20:23:28.875403] INFO: algo: handle_splits get splits [dt:2017-07-20 00:00:00+00:00] [asset:Equity(1640 [300407.SZA]), ratio:0.9987163543701172]
[2022-11-07 20:23:30.791958] INFO: algo: handle_splits get splits [dt:2017-09-29 00:00:00+00:00] [asset:Equity(3702 [601515.SHA]), ratio:0.977698564529419]
[2022-11-07 20:23:30.794394] INFO: Position: position stock handle split[sid:3702, orig_amount:3600, new_amount:3682.0, orig_cost:11.320010513498845, new_cost:11.0676, ratio:0.977698564529419, last_sale_price:10.960000991821289]
[2022-11-07 20:23:30.796087] INFO: Position: after split: PositionStock(asset:Equity(3702 [601515.SHA]), amount:3682.0, cost_basis:11.0676, last_sale_price:11.210000038146973)
[2022-11-07 20:23:30.798154] INFO: Position: returning cash: 1.2767
[2022-11-07 20:23:33.107927] INFO: Performance: Simulated 488 trading days out of 488.
[2022-11-07 20:23:33.109783] INFO: Performance: first open: 2016-01-04 09:30:00+00:00
[2022-11-07 20:23:33.111749] INFO: Performance: last close: 2017-12-29 15:00:00+00:00
[2022-11-07 20:23:41.236931] INFO: moduleinvoker: backtest.v8 运行完成[47.857808s].
[2022-11-07 20:23:41.239224] INFO: moduleinvoker: trade.v4 运行完成[47.934837s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-0d41b664d8f14dc9954a0470c9990970"}/bigcharts-data-end
- 收益率18.37%
- 年化收益率9.1%
- 基准收益率8.04%
- 阿尔法0.07
- 贝塔0.93
- 夏普比率0.35
- 胜率0.56
- 盈亏比0.95
- 收益波动率25.09%
- 信息比率0.02
- 最大回撤27.73%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9ea14df10b414baf8353e81f277f34e9"}/bigcharts-data-end