{"description":"实验创建于2017/11/15","graph":{"edges":[{"to_node_id":"-293:inputs","from_node_id":"-210:data"},{"to_node_id":"-218:inputs","from_node_id":"-210:data"},{"to_node_id":"-6487:inputs","from_node_id":"-218:data"},{"to_node_id":"-692:input_data","from_node_id":"-316:data"},{"to_node_id":"-332:trained_model","from_node_id":"-320:data"},{"to_node_id":"-2431:input_1","from_node_id":"-332:data"},{"to_node_id":"-341:features","from_node_id":"-2295:data"},{"to_node_id":"-243:features","from_node_id":"-2295:data"},{"to_node_id":"-10905:input_2","from_node_id":"-2295:data"},{"to_node_id":"-5848:input_2","from_node_id":"-2295:data"},{"to_node_id":"-37301:features","from_node_id":"-2295:data"},{"to_node_id":"-6513:features","from_node_id":"-2295:data"},{"to_node_id":"-300:features","from_node_id":"-2295:data"},{"to_node_id":"-307:features","from_node_id":"-2295:data"},{"to_node_id":"-316:features","from_node_id":"-2295:data"},{"to_node_id":"-692:features","from_node_id":"-2295:data"},{"to_node_id":"-293:outputs","from_node_id":"-259:data"},{"to_node_id":"-243:input_data","from_node_id":"-2290:data"},{"to_node_id":"-289:instruments","from_node_id":"-620:data"},{"to_node_id":"-300:instruments","from_node_id":"-620:data"},{"to_node_id":"-6515:input_data","from_node_id":"-692:data"},{"to_node_id":"-332:input_data","from_node_id":"-341:data"},{"to_node_id":"-2614:input_1","from_node_id":"-289:data"},{"to_node_id":"-307:input_data","from_node_id":"-300:data"},{"to_node_id":"-6509:input_data","from_node_id":"-307:data"},{"to_node_id":"-316:instruments","from_node_id":"-322:data"},{"to_node_id":"-141:instruments","from_node_id":"-322:data"},{"to_node_id":"-320:input_model","from_node_id":"-293:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-436:input_2","from_node_id":"-243:data"},{"to_node_id":"-320:training_data","from_node_id":"-436:data_1"},{"to_node_id":"-320:validation_data","from_node_id":"-436:data_2"},{"to_node_id":"-37301:input_data","from_node_id":"-10905:data"},{"to_node_id":"-6513:input_data","from_node_id":"-5848:data"},{"to_node_id":"-2431:input_2","from_node_id":"-5848:data"},{"to_node_id":"-2290:data2","from_node_id":"-37301:data"},{"to_node_id":"-341:input_data","from_node_id":"-6513:data"},{"to_node_id":"-259:inputs","from_node_id":"-14806:data"},{"to_node_id":"-2290:data1","from_node_id":"-2614:data"},{"to_node_id":"-14806:inputs","from_node_id":"-6487:data"},{"to_node_id":"-10905:input_1","from_node_id":"-6509:data"},{"to_node_id":"-5848:input_1","from_node_id":"-6515:data"}],"nodes":[{"node_id":"-210","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"3,4","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-210"}],"output_ports":[{"name":"data","node_id":"-210"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-218","module_id":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","parameters":[{"name":"units","value":"8","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_activation","value":"hard_sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_initializer","value":"Orthogonal","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"unit_forget_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"dropout","value":"0","type":"Literal","bound_global_parameter":null},{"name":"recurrent_dropout","value":0,"type":"Literal","bound_global_parameter":null},{"name":"return_sequences","value":"False","type":"Literal","bound_global_parameter":null},{"name":"implementation","value":"2","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-218"}],"output_ports":[{"name":"data","node_id":"-218"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-316","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"365","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-316"},{"name":"features","node_id":"-316"}],"output_ports":[{"name":"data","node_id":"-316"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-320","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"3","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"from tensorflow.keras.callbacks import EarlyStopping\nbigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=10)","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-320"},{"name":"training_data","node_id":"-320"},{"name":"validation_data","node_id":"-320"}],"output_ports":[{"name":"data","node_id":"-320"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-332","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-332"},{"name":"input_data","node_id":"-332"}],"output_ports":[{"name":"data","node_id":"-332"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-2295","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nlow_0\nopen_0\nreturn_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-2295"}],"output_ports":[{"name":"data","node_id":"-2295"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-259","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-259"}],"output_ports":[{"name":"data","node_id":"-259"}],"cacheable":false,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-2290","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-2290"},{"name":"data2","node_id":"-2290"}],"output_ports":[{"name":"data","node_id":"-2290"}],"cacheable":true,"seq_num":17,"comment":"标注特征连接","comment_collapsed":true},{"node_id":"-620","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2010-03-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-620"}],"output_ports":[{"name":"data","node_id":"-620"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-692","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-692"},{"name":"features","node_id":"-692"}],"output_ports":[{"name":"data","node_id":"-692"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-341","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"5","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-341"},{"name":"features","node_id":"-341"}],"output_ports":[{"name":"data","node_id":"-341"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-289","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:2日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-289"}],"output_ports":[{"name":"data","node_id":"-289"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-300","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-300"},{"name":"features","node_id":"-300"}],"output_ports":[{"name":"data","node_id":"-300"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-307","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-307"},{"name":"features","node_id":"-307"}],"output_ports":[{"name":"data","node_id":"-307"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-322","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-01-30","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-322"}],"output_ports":[{"name":"data","node_id":"-322"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-293"},{"name":"outputs","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.00016, sell_cost=0.00116, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 3\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [0.3, 0.2, 0.2]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n #------------------------------------------止损模块START--------------------------------------------\n date = data.current_dt.strftime('%Y-%m-%d')\n positions = {e.symbol: p.cost_basis for e, p in context.portfolio.positions.items()}\n # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n current_stoploss_stock = [] \n if len(positions) > 0:\n for i in positions.keys():\n stock_cost = positions[i] \n stock_market_price = data.current(context.symbol(i), 'price') \n # 亏5%就止损\n if (stock_market_price - stock_cost) / stock_cost <= -0.05: \n context.order_target_percent(context.symbol(i),0) \n current_stoploss_stock.append(i)\n print('日期:',date,'股票:',i,'出现止损状况')\n #-------------------------------------------止损模块END---------------------------------------------\n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n \n #----------这里加入股票判断,如果已经止盈/止损了就跳过此股票,避免二次卖出--------\n if instrument in current_stoploss_stock:\n continue\n #----------------------------------------------------------------------------------------\n \n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n price = data.current(context.symbol(instrument), 'price') # 最新价格\n stock_num = np.floor(cash/price/100)*100 # 向下取整\n context.order(context.symbol(instrument), stock_num) # 整百下单","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":32,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":33,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"5","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-436","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_2.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'])\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-436"},{"name":"input_2","node_id":"-436"},{"name":"input_3","node_id":"-436"}],"output_ports":[{"name":"data_1","node_id":"-436"},{"name":"data_2","node_id":"-436"},{"name":"data_3","node_id":"-436"}],"cacheable":true,"seq_num":30,"comment":"","comment_collapsed":true},{"node_id":"-10905","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-10905"},{"name":"input_2","node_id":"-10905"}],"output_ports":[{"name":"data","node_id":"-10905"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-5848","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-5848"},{"name":"input_2","node_id":"-5848"}],"output_ports":[{"name":"data","node_id":"-5848"}],"cacheable":true,"seq_num":29,"comment":"","comment_collapsed":true},{"node_id":"-37301","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-37301"},{"name":"features","node_id":"-37301"}],"output_ports":[{"name":"data","node_id":"-37301"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-6513","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-6513"},{"name":"features","node_id":"-6513"}],"output_ports":[{"name":"data","node_id":"-6513"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-14806","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"8","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14806"}],"output_ports":[{"name":"data","node_id":"-14806"}],"cacheable":false,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-2614","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2614"},{"name":"input_2","node_id":"-2614"}],"output_ports":[{"name":"data","node_id":"-2614"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-6487","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-6487"}],"output_ports":[{"name":"data","node_id":"-6487"}],"cacheable":false,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-6509","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"return_0>0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6509"}],"output_ports":[{"name":"data","node_id":"-6509"},{"name":"left_data","node_id":"-6509"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-6515","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"return_0>0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6515"}],"output_ports":[{"name":"data","node_id":"-6515"},{"name":"left_data","node_id":"-6515"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-210' Position='262,-56,200,200'/><node_position Node='-218' Position='272,63,200,200'/><node_position Node='-316' Position='1245,-28,200,200'/><node_position Node='-320' Position='648,541,200,200'/><node_position Node='-332' Position='790,622,200,200'/><node_position Node='-2295' Position='1067,-298,200,200'/><node_position Node='-259' Position='260,391,200,200'/><node_position Node='-2290' Position='584,228,200,200'/><node_position Node='-620' Position='710,-166,200,200'/><node_position Node='-692' Position='1249,82,200,200'/><node_position Node='-341' Position='1249,397,200,200'/><node_position Node='-289' Position='581,-65,200,200'/><node_position Node='-300' Position='888,-83,200,200'/><node_position Node='-307' Position='892,-12,200,200'/><node_position Node='-322' Position='1238,-138,200,200'/><node_position Node='-293' Position='379,481,200,200'/><node_position Node='-141' Position='1108,756,200,200'/><node_position Node='-2431' Position='1028,683,200,200'/><node_position Node='-243' Position='591,370,200,200'/><node_position Node='-436' Position='692,461,200,200'/><node_position Node='-10905' Position='891,137,200,200'/><node_position Node='-5848' Position='1246,234,200,200'/><node_position Node='-37301' Position='893,217,200,200'/><node_position Node='-6513' Position='1246.7022705078125,312.4255676269531,200,200'/><node_position Node='-14806' Position='266,285,200,200'/><node_position Node='-2614' Position='577,64,200,200'/><node_position Node='-6487' Position='268,175,200,200'/><node_position Node='-6509' Position='895,61,200,200'/><node_position Node='-6515' Position='1244,153,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-21 18:00:23.647848] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.081012s].
[2021-12-21 18:00:24.298466] INFO: moduleinvoker: dl_layer_lstm.v1 运行完成[0.631551s].
[2021-12-21 18:00:24.328663] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.015423s].
[2021-12-21 18:00:24.355289] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.015706s].
[2021-12-21 18:00:24.383296] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.020762s].
[2021-12-21 18:00:24.479001] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-21 18:00:24.592100] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.594903] INFO: moduleinvoker: cached.v3 运行完成[0.11592s].
[2021-12-21 18:00:24.598893] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.207111s].
[2021-12-21 18:00:24.626619] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-21 18:00:24.640716] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.643674] INFO: moduleinvoker: input_features.v1 运行完成[0.017077s].
[2021-12-21 18:00:24.652027] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-21 18:00:24.691489] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.694427] INFO: moduleinvoker: instruments.v2 运行完成[0.042392s].
[2021-12-21 18:00:24.706928] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-21 18:00:24.717491] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.719878] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.01295s].
[2021-12-21 18:00:24.728709] INFO: moduleinvoker: standardlize.v9 开始运行..
[2021-12-21 18:00:24.742084] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.743934] INFO: moduleinvoker: standardlize.v9 运行完成[0.015227s].
[2021-12-21 18:00:24.798296] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-21 18:00:24.813154] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.815341] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.01707s].
[2021-12-21 18:00:24.825415] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-21 18:00:24.865861] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.868364] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.042945s].
[2021-12-21 18:00:24.879532] INFO: moduleinvoker: filter.v3 开始运行..
[2021-12-21 18:00:24.889979] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.892434] INFO: moduleinvoker: filter.v3 运行完成[0.012905s].
[2021-12-21 18:00:24.910242] INFO: moduleinvoker: standardlize.v9 开始运行..
[2021-12-21 18:00:24.923205] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.925536] INFO: moduleinvoker: standardlize.v9 运行完成[0.015315s].
[2021-12-21 18:00:24.937271] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-12-21 18:00:24.949542] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.951716] INFO: moduleinvoker: dropnan.v2 运行完成[0.014447s].
[2021-12-21 18:00:24.964317] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-21 18:00:24.976286] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:24.978654] INFO: moduleinvoker: join.v3 运行完成[0.014349s].
[2021-12-21 18:00:24.996346] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-12-21 18:00:25.008395] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.011005] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.014692s].
[2021-12-21 18:00:25.030439] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-21 18:00:25.055794] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.060097] INFO: moduleinvoker: cached.v3 运行完成[0.02969s].
[2021-12-21 18:00:25.075884] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2021-12-21 18:00:25.095336] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.098773] INFO: moduleinvoker: dl_model_train.v1 运行完成[0.022918s].
[2021-12-21 18:00:25.114436] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-21 18:00:25.126954] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.129317] INFO: moduleinvoker: instruments.v2 运行完成[0.014883s].
[2021-12-21 18:00:25.147562] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-21 18:00:25.202111] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.204362] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.056806s].
[2021-12-21 18:00:25.214745] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-21 18:00:25.232208] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.234945] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.020202s].
[2021-12-21 18:00:25.244600] INFO: moduleinvoker: filter.v3 开始运行..
[2021-12-21 18:00:25.257483] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.259189] INFO: moduleinvoker: filter.v3 运行完成[0.014596s].
[2021-12-21 18:00:25.266346] INFO: moduleinvoker: standardlize.v9 开始运行..
[2021-12-21 18:00:25.277189] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.279035] INFO: moduleinvoker: standardlize.v9 运行完成[0.012681s].
[2021-12-21 18:00:25.290663] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-12-21 18:00:25.299843] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.302413] INFO: moduleinvoker: dropnan.v2 运行完成[0.011742s].
[2021-12-21 18:00:25.334962] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-12-21 18:00:25.347652] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.349717] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.014784s].
[2021-12-21 18:00:25.355770] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2021-12-21 18:00:25.369697] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:25.373503] INFO: moduleinvoker: dl_model_predict.v1 运行完成[0.017729s].
[2021-12-21 18:00:25.392832] INFO: moduleinvoker: cached.v3 开始运行..
[2021-12-21 18:00:52.280645] INFO: moduleinvoker: cached.v3 运行完成[26.887796s].
[2021-12-21 18:00:52.487869] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-12-21 18:00:52.494900] INFO: backtest: biglearning backtest:V8.6.0
[2021-12-21 18:00:52.496876] INFO: backtest: product_type:stock by specified
[2021-12-21 18:00:52.700896] INFO: moduleinvoker: cached.v2 开始运行..
[2021-12-21 18:00:52.714344] INFO: moduleinvoker: 命中缓存
[2021-12-21 18:00:52.716630] INFO: moduleinvoker: cached.v2 运行完成[0.015764s].
[2021-12-21 18:00:55.037595] INFO: algo: TradingAlgorithm V1.8.6
[2021-12-21 18:00:55.606813] INFO: algo: trading transform...
[2021-12-21 18:00:56.549055] INFO: Performance: Simulated 20 trading days out of 20.
[2021-12-21 18:00:56.551755] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2021-12-21 18:00:56.553750] INFO: Performance: last close: 2021-01-29 15:00:00+00:00
[2021-12-21 18:01:00.770347] INFO: moduleinvoker: backtest.v8 运行完成[8.282456s].
[2021-12-21 18:01:00.773259] INFO: moduleinvoker: trade.v4 运行完成[8.450918s].
DataSource(fe838231cf0d417b8130a350da452cc5T)
日期: 2021-01-07 股票: 605186.SHA 出现止损状况
日期: 2021-01-07 股票: 300506.SZA 出现止损状况
日期: 2021-01-07 股票: 000606.SZA 出现止损状况
日期: 2021-01-07 股票: 603665.SHA 出现止损状况
日期: 2021-01-08 股票: 605155.SHA 出现止损状况
日期: 2021-01-11 股票: 300064.SZA 出现止损状况
日期: 2021-01-11 股票: 000007.SZA 出现止损状况
日期: 2021-01-12 股票: 002781.SZA 出现止损状况
日期: 2021-01-12 股票: 000007.SZA 出现止损状况
日期: 2021-01-12 股票: 003029.SZA 出现止损状况
日期: 2021-01-13 股票: 002455.SZA 出现止损状况
日期: 2021-01-14 股票: 601375.SHA 出现止损状况
日期: 2021-01-14 股票: 003028.SZA 出现止损状况
日期: 2021-01-14 股票: 300489.SZA 出现止损状况
日期: 2021-01-19 股票: 605179.SHA 出现止损状况
日期: 2021-01-22 股票: 000702.SZA 出现止损状况
日期: 2021-01-22 股票: 002071.SZA 出现止损状况
日期: 2021-01-25 股票: 002071.SZA 出现止损状况
日期: 2021-01-25 股票: 002633.SZA 出现止损状况
日期: 2021-01-25 股票: 603607.SHA 出现止损状况
日期: 2021-01-25 股票: 300465.SZA 出现止损状况
日期: 2021-01-26 股票: 002071.SZA 出现止损状况
日期: 2021-01-26 股票: 300038.SZA 出现止损状况
日期: 2021-01-26 股票: 001896.SZA 出现止损状况
日期: 2021-01-27 股票: 002071.SZA 出现止损状况
日期: 2021-01-27 股票: 002813.SZA 出现止损状况
日期: 2021-01-27 股票: 600086.SHA 出现止损状况
日期: 2021-01-28 股票: 000570.SZA 出现止损状况
日期: 2021-01-28 股票: 002071.SZA 出现止损状况
日期: 2021-01-28 股票: 600086.SHA 出现止损状况
日期: 2021-01-29 股票: 002071.SZA 出现止损状况
日期: 2021-01-29 股票: 600086.SHA 出现止损状况
日期: 2021-01-29 股票: 000903.SZA 出现止损状况
日期: 2021-01-29 股票: 300641.SZA 出现止损状况
日期: 2021-01-29 股票: 002943.SZA 出现止损状况
日期: 2021-01-29 股票: 002370.SZA 出现止损状况
- 收益率-9.18%
- 年化收益率-70.28%
- 基准收益率2.7%
- 阿尔法-0.73
- 贝塔0.26
- 夏普比率-4.97
- 胜率0.35
- 盈亏比1.25
- 收益波动率24.38%
- 信息比率-0.33
- 最大回撤9.8%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-01c4259f3dad4e508fb666903d917035"}/bigcharts-data-end