复制链接
克隆策略

    {"description":"实验创建于2017/11/15","graph":{"edges":[{"to_node_id":"-293:inputs","from_node_id":"-210:data"},{"to_node_id":"-218:inputs","from_node_id":"-210:data"},{"to_node_id":"-6487:inputs","from_node_id":"-218:data"},{"to_node_id":"-692:input_data","from_node_id":"-316:data"},{"to_node_id":"-332:trained_model","from_node_id":"-320:data"},{"to_node_id":"-2431:input_1","from_node_id":"-332:data"},{"to_node_id":"-341:features","from_node_id":"-2295:data"},{"to_node_id":"-243:features","from_node_id":"-2295:data"},{"to_node_id":"-10905:input_2","from_node_id":"-2295:data"},{"to_node_id":"-5848:input_2","from_node_id":"-2295:data"},{"to_node_id":"-37301:features","from_node_id":"-2295:data"},{"to_node_id":"-6513:features","from_node_id":"-2295:data"},{"to_node_id":"-300:features","from_node_id":"-2295:data"},{"to_node_id":"-307:features","from_node_id":"-2295:data"},{"to_node_id":"-316:features","from_node_id":"-2295:data"},{"to_node_id":"-692:features","from_node_id":"-2295:data"},{"to_node_id":"-293:outputs","from_node_id":"-259:data"},{"to_node_id":"-243:input_data","from_node_id":"-2290:data"},{"to_node_id":"-289:instruments","from_node_id":"-620:data"},{"to_node_id":"-300:instruments","from_node_id":"-620:data"},{"to_node_id":"-6515:input_data","from_node_id":"-692:data"},{"to_node_id":"-332:input_data","from_node_id":"-341:data"},{"to_node_id":"-2614:input_1","from_node_id":"-289:data"},{"to_node_id":"-307:input_data","from_node_id":"-300:data"},{"to_node_id":"-6509:input_data","from_node_id":"-307:data"},{"to_node_id":"-316:instruments","from_node_id":"-322:data"},{"to_node_id":"-141:instruments","from_node_id":"-322:data"},{"to_node_id":"-320:input_model","from_node_id":"-293:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-436:input_2","from_node_id":"-243:data"},{"to_node_id":"-320:training_data","from_node_id":"-436:data_1"},{"to_node_id":"-320:validation_data","from_node_id":"-436:data_2"},{"to_node_id":"-37301:input_data","from_node_id":"-10905:data"},{"to_node_id":"-6513:input_data","from_node_id":"-5848:data"},{"to_node_id":"-2431:input_2","from_node_id":"-5848:data"},{"to_node_id":"-2290:data2","from_node_id":"-37301:data"},{"to_node_id":"-341:input_data","from_node_id":"-6513:data"},{"to_node_id":"-259:inputs","from_node_id":"-14806:data"},{"to_node_id":"-2290:data1","from_node_id":"-2614:data"},{"to_node_id":"-14806:inputs","from_node_id":"-6487:data"},{"to_node_id":"-10905:input_1","from_node_id":"-6509:data"},{"to_node_id":"-5848:input_1","from_node_id":"-6515:data"}],"nodes":[{"node_id":"-210","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"3,4","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-210"}],"output_ports":[{"name":"data","node_id":"-210"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-218","module_id":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","parameters":[{"name":"units","value":"8","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_activation","value":"hard_sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_initializer","value":"Orthogonal","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"unit_forget_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"dropout","value":"0","type":"Literal","bound_global_parameter":null},{"name":"recurrent_dropout","value":0,"type":"Literal","bound_global_parameter":null},{"name":"return_sequences","value":"False","type":"Literal","bound_global_parameter":null},{"name":"implementation","value":"2","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-218"}],"output_ports":[{"name":"data","node_id":"-218"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-316","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"365","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-316"},{"name":"features","node_id":"-316"}],"output_ports":[{"name":"data","node_id":"-316"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-320","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"3","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"from tensorflow.keras.callbacks import EarlyStopping\nbigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=10)","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-320"},{"name":"training_data","node_id":"-320"},{"name":"validation_data","node_id":"-320"}],"output_ports":[{"name":"data","node_id":"-320"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-332","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-332"},{"name":"input_data","node_id":"-332"}],"output_ports":[{"name":"data","node_id":"-332"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-2295","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nlow_0\nopen_0\nreturn_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-2295"}],"output_ports":[{"name":"data","node_id":"-2295"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-259","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-259"}],"output_ports":[{"name":"data","node_id":"-259"}],"cacheable":false,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-2290","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-2290"},{"name":"data2","node_id":"-2290"}],"output_ports":[{"name":"data","node_id":"-2290"}],"cacheable":true,"seq_num":17,"comment":"标注特征连接","comment_collapsed":true},{"node_id":"-620","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2010-03-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-620"}],"output_ports":[{"name":"data","node_id":"-620"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-692","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-692"},{"name":"features","node_id":"-692"}],"output_ports":[{"name":"data","node_id":"-692"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-341","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"5","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-341"},{"name":"features","node_id":"-341"}],"output_ports":[{"name":"data","node_id":"-341"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-289","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:2日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-289"}],"output_ports":[{"name":"data","node_id":"-289"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-300","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-300"},{"name":"features","node_id":"-300"}],"output_ports":[{"name":"data","node_id":"-300"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-307","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-307"},{"name":"features","node_id":"-307"}],"output_ports":[{"name":"data","node_id":"-307"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-322","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-01-30","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-322"}],"output_ports":[{"name":"data","node_id":"-322"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-293"},{"name":"outputs","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.00016, sell_cost=0.00116, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 3\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [0.3, 0.2, 0.2]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n #------------------------------------------止损模块START--------------------------------------------\n date = data.current_dt.strftime('%Y-%m-%d')\n positions = {e.symbol: p.cost_basis for e, p in context.portfolio.positions.items()}\n # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断\n current_stoploss_stock = [] \n if len(positions) > 0:\n for i in positions.keys():\n stock_cost = positions[i] \n stock_market_price = data.current(context.symbol(i), 'price') \n # 亏5%就止损\n if (stock_market_price - stock_cost) / stock_cost <= -0.05: \n context.order_target_percent(context.symbol(i),0) \n current_stoploss_stock.append(i)\n print('日期:',date,'股票:',i,'出现止损状况')\n #-------------------------------------------止损模块END---------------------------------------------\n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n \n #----------这里加入股票判断,如果已经止盈/止损了就跳过此股票,避免二次卖出--------\n if instrument in current_stoploss_stock:\n continue\n #----------------------------------------------------------------------------------------\n \n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n price = data.current(context.symbol(instrument), 'price') # 最新价格\n stock_num = np.floor(cash/price/100)*100 # 向下取整\n context.order(context.symbol(instrument), stock_num) # 整百下单","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":32,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":33,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"5","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-436","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_2.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'])\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-436"},{"name":"input_2","node_id":"-436"},{"name":"input_3","node_id":"-436"}],"output_ports":[{"name":"data_1","node_id":"-436"},{"name":"data_2","node_id":"-436"},{"name":"data_3","node_id":"-436"}],"cacheable":true,"seq_num":30,"comment":"","comment_collapsed":true},{"node_id":"-10905","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-10905"},{"name":"input_2","node_id":"-10905"}],"output_ports":[{"name":"data","node_id":"-10905"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-5848","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-5848"},{"name":"input_2","node_id":"-5848"}],"output_ports":[{"name":"data","node_id":"-5848"}],"cacheable":true,"seq_num":29,"comment":"","comment_collapsed":true},{"node_id":"-37301","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-37301"},{"name":"features","node_id":"-37301"}],"output_ports":[{"name":"data","node_id":"-37301"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-6513","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-6513"},{"name":"features","node_id":"-6513"}],"output_ports":[{"name":"data","node_id":"-6513"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-14806","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"8","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14806"}],"output_ports":[{"name":"data","node_id":"-14806"}],"cacheable":false,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-2614","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2614"},{"name":"input_2","node_id":"-2614"}],"output_ports":[{"name":"data","node_id":"-2614"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-6487","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-6487"}],"output_ports":[{"name":"data","node_id":"-6487"}],"cacheable":false,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-6509","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"return_0>0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6509"}],"output_ports":[{"name":"data","node_id":"-6509"},{"name":"left_data","node_id":"-6509"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-6515","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"return_0>0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-6515"}],"output_ports":[{"name":"data","node_id":"-6515"},{"name":"left_data","node_id":"-6515"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-210' Position='262,-56,200,200'/><node_position Node='-218' Position='272,63,200,200'/><node_position Node='-316' Position='1245,-28,200,200'/><node_position Node='-320' Position='648,541,200,200'/><node_position Node='-332' Position='790,622,200,200'/><node_position Node='-2295' Position='1067,-298,200,200'/><node_position Node='-259' Position='260,391,200,200'/><node_position Node='-2290' Position='584,228,200,200'/><node_position Node='-620' Position='710,-166,200,200'/><node_position Node='-692' Position='1249,82,200,200'/><node_position Node='-341' Position='1249,397,200,200'/><node_position Node='-289' Position='581,-65,200,200'/><node_position Node='-300' Position='888,-83,200,200'/><node_position Node='-307' Position='892,-12,200,200'/><node_position Node='-322' Position='1238,-138,200,200'/><node_position Node='-293' Position='379,481,200,200'/><node_position Node='-141' Position='1108,756,200,200'/><node_position Node='-2431' Position='1028,683,200,200'/><node_position Node='-243' Position='591,370,200,200'/><node_position Node='-436' Position='692,461,200,200'/><node_position Node='-10905' Position='891,137,200,200'/><node_position Node='-5848' Position='1246,234,200,200'/><node_position Node='-37301' Position='893,217,200,200'/><node_position Node='-6513' Position='1246.7022705078125,312.4255676269531,200,200'/><node_position Node='-14806' Position='266,285,200,200'/><node_position Node='-2614' Position='577,64,200,200'/><node_position Node='-6487' Position='268,175,200,200'/><node_position Node='-6509' Position='895,61,200,200'/><node_position Node='-6515' Position='1244,153,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [4]:
    # 本代码由可视化策略环境自动生成 2021年12月21日 18:01
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m30_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        from sklearn.model_selection import train_test_split
        data = input_2.read()
        x_train, x_val, y_train, y_val = train_test_split(data["x"], data['y'])
        data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})
        data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m30_post_run_bigquant_run(outputs):
        return outputs
    
    from tensorflow.keras.callbacks import EarlyStopping
    m6_earlystop_bigquant_run=EarlyStopping(monitor='val_mse', min_delta=0.0001, patience=10)
    # 用户的自定义层需要写到字典中,比如
    # {
    #   "MyLayer": MyLayer
    # }
    m6_custom_objects_bigquant_run = {
        
    }
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m33_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        pred_label = input_1.read_pickle()
        df = input_2.read_df()
        df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
        df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
        return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m33_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m32_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.00016, sell_cost=0.00116, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 3
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = [0.3, 0.2, 0.2]
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.options['hold_days'] = 5
    # 回测引擎:每日数据处理函数,每天执行一次
    def m32_handle_data_bigquant_run(context, data):
        
       #------------------------------------------止损模块START--------------------------------------------
        date = data.current_dt.strftime('%Y-%m-%d')
        positions = {e.symbol: p.cost_basis  for e, p in context.portfolio.positions.items()}
        # 新建当日止损股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断
        current_stoploss_stock = [] 
        if len(positions) > 0:
            for i in positions.keys():
                stock_cost = positions[i] 
                stock_market_price = data.current(context.symbol(i), 'price') 
                # 亏5%就止损
                if (stock_market_price - stock_cost) / stock_cost <= -0.05:   
                    context.order_target_percent(context.symbol(i),0)     
                    current_stoploss_stock.append(i)
                    print('日期:',date,'股票:',i,'出现止损状况')
        #-------------------------------------------止损模块END---------------------------------------------
        
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                
               #----------这里加入股票判断,如果已经止盈/止损了就跳过此股票,避免二次卖出--------
                if instrument in current_stoploss_stock:
                    continue
               #----------------------------------------------------------------------------------------
                
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                price = data.current(context.symbol(instrument), 'price')  # 最新价格
                stock_num = np.floor(cash/price/100)*100  # 向下取整
                context.order(context.symbol(instrument), stock_num) # 整百下单
    # 回测引擎:准备数据,只执行一次
    def m32_prepare_bigquant_run(context):
        pass
    
    
    m3 = M.dl_layer_input.v1(
        shape='3,4',
        batch_shape='',
        dtype='float32',
        sparse=False,
        name=''
    )
    
    m4 = M.dl_layer_lstm.v1(
        inputs=m3.data,
        units=8,
        activation='tanh',
        recurrent_activation='hard_sigmoid',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        recurrent_initializer='Orthogonal',
        bias_initializer='Zeros',
        unit_forget_bias=True,
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        recurrent_regularizer='None',
        recurrent_regularizer_l1=0,
        recurrent_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        recurrent_constraint='None',
        bias_constraint='None',
        dropout=0,
        recurrent_dropout=0,
        return_sequences=False,
        implementation='2',
        name=''
    )
    
    m11 = M.dl_layer_dropout.v1(
        inputs=m4.data,
        rate=0.1,
        noise_shape='',
        name=''
    )
    
    m10 = M.dl_layer_dense.v1(
        inputs=m11.data,
        units=8,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m9 = M.dl_layer_dense.v1(
        inputs=m10.data,
        units=1,
        activation='linear',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m5 = M.dl_model_init.v1(
        inputs=m3.data,
        outputs=m9.data
    )
    
    m8 = M.input_features.v1(
        features="""close_0
    low_0
    open_0
    return_0
    """
    )
    
    m24 = M.instruments.v2(
        start_date='2010-01-01',
        end_date='2010-03-31',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m21 = M.advanced_auto_labeler.v2(
        instruments=m24.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:2日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -2) / shift(open, -1)-1
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    
    # 将分数映射到分类,这里使用20个分类
    #all_wbins(label, 20)
    
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=False,
        user_functions={}
    )
    
    m2 = M.standardlize.v9(
        input_1=m21.data,
        standard_func='ZScoreNorm',
        columns_input='label'
    )
    
    m22 = M.general_feature_extractor.v7(
        instruments=m24.data,
        features=m8.data,
        start_date='',
        end_date='',
        before_start_days=0
    )
    
    m23 = M.derived_feature_extractor.v3(
        input_data=m22.data,
        features=m8.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m15 = M.filter.v3(
        input_data=m23.data,
        expr='return_0>0',
        output_left_data=False
    )
    
    m12 = M.standardlize.v9(
        input_1=m15.data,
        input_2=m8.data,
        standard_func='ZScoreNorm',
        columns_input=''
    )
    
    m20 = M.dropnan.v2(
        input_data=m12.data,
        features=m8.data
    )
    
    m17 = M.join.v3(
        data1=m2.data,
        data2=m20.data,
        on='date,instrument',
        how='inner',
        sort=True
    )
    
    m1 = M.dl_convert_to_bin.v2(
        input_data=m17.data,
        features=m8.data,
        window_size=3,
        feature_clip=5,
        flatten=False,
        window_along_col='instrument'
    )
    
    m30 = M.cached.v3(
        input_2=m1.data,
        run=m30_run_bigquant_run,
        post_run=m30_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m6 = M.dl_model_train.v1(
        input_model=m5.data,
        training_data=m30.data_1,
        validation_data=m30.data_2,
        optimizer='Adam',
        loss='mean_squared_error',
        metrics='mse',
        batch_size=1024,
        epochs=3,
        earlystop=m6_earlystop_bigquant_run,
        custom_objects=m6_custom_objects_bigquant_run,
        n_gpus=0,
        verbose='2:每个epoch输出一行记录'
    )
    
    m28 = M.instruments.v2(
        start_date='2021-01-01',
        end_date='2021-01-30',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m16 = M.general_feature_extractor.v7(
        instruments=m28.data,
        features=m8.data,
        start_date='',
        end_date='',
        before_start_days=365
    )
    
    m26 = M.derived_feature_extractor.v3(
        input_data=m16.data,
        features=m8.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m19 = M.filter.v3(
        input_data=m26.data,
        expr='return_0>0',
        output_left_data=False
    )
    
    m29 = M.standardlize.v9(
        input_1=m19.data,
        input_2=m8.data,
        standard_func='ZScoreNorm',
        columns_input=''
    )
    
    m18 = M.dropnan.v2(
        input_data=m29.data,
        features=m8.data
    )
    
    m27 = M.dl_convert_to_bin.v2(
        input_data=m18.data,
        features=m8.data,
        window_size=3,
        feature_clip=5,
        flatten=False,
        window_along_col='instrument'
    )
    
    m7 = M.dl_model_predict.v1(
        trained_model=m6.data,
        input_data=m27.data,
        batch_size=1024,
        n_gpus=0,
        verbose='2:每个epoch输出一行记录'
    )
    
    m33 = M.cached.v3(
        input_1=m7.data,
        input_2=m29.data,
        run=m33_run_bigquant_run,
        post_run=m33_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m32 = M.trade.v4(
        instruments=m28.data,
        options_data=m33.data_1,
        start_date='',
        end_date='',
        initialize=m32_initialize_bigquant_run,
        handle_data=m32_handle_data_bigquant_run,
        prepare=m32_prepare_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=100000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.SHA'
    )
    
    DataSource(fe838231cf0d417b8130a350da452cc5T)
    
    日期: 2021-01-07 股票: 605186.SHA 出现止损状况
    日期: 2021-01-07 股票: 300506.SZA 出现止损状况
    日期: 2021-01-07 股票: 000606.SZA 出现止损状况
    日期: 2021-01-07 股票: 603665.SHA 出现止损状况
    日期: 2021-01-08 股票: 605155.SHA 出现止损状况
    日期: 2021-01-11 股票: 300064.SZA 出现止损状况
    日期: 2021-01-11 股票: 000007.SZA 出现止损状况
    日期: 2021-01-12 股票: 002781.SZA 出现止损状况
    日期: 2021-01-12 股票: 000007.SZA 出现止损状况
    日期: 2021-01-12 股票: 003029.SZA 出现止损状况
    日期: 2021-01-13 股票: 002455.SZA 出现止损状况
    日期: 2021-01-14 股票: 601375.SHA 出现止损状况
    日期: 2021-01-14 股票: 003028.SZA 出现止损状况
    日期: 2021-01-14 股票: 300489.SZA 出现止损状况
    日期: 2021-01-19 股票: 605179.SHA 出现止损状况
    日期: 2021-01-22 股票: 000702.SZA 出现止损状况
    日期: 2021-01-22 股票: 002071.SZA 出现止损状况
    日期: 2021-01-25 股票: 002071.SZA 出现止损状况
    日期: 2021-01-25 股票: 002633.SZA 出现止损状况
    日期: 2021-01-25 股票: 603607.SHA 出现止损状况
    日期: 2021-01-25 股票: 300465.SZA 出现止损状况
    日期: 2021-01-26 股票: 002071.SZA 出现止损状况
    日期: 2021-01-26 股票: 300038.SZA 出现止损状况
    日期: 2021-01-26 股票: 001896.SZA 出现止损状况
    日期: 2021-01-27 股票: 002071.SZA 出现止损状况
    日期: 2021-01-27 股票: 002813.SZA 出现止损状况
    日期: 2021-01-27 股票: 600086.SHA 出现止损状况
    日期: 2021-01-28 股票: 000570.SZA 出现止损状况
    日期: 2021-01-28 股票: 002071.SZA 出现止损状况
    日期: 2021-01-28 股票: 600086.SHA 出现止损状况
    日期: 2021-01-29 股票: 002071.SZA 出现止损状况
    日期: 2021-01-29 股票: 600086.SHA 出现止损状况
    日期: 2021-01-29 股票: 000903.SZA 出现止损状况
    日期: 2021-01-29 股票: 300641.SZA 出现止损状况
    日期: 2021-01-29 股票: 002943.SZA 出现止损状况
    日期: 2021-01-29 股票: 002370.SZA 出现止损状况
    
    • 收益率-9.18%
    • 年化收益率-70.28%
    • 基准收益率2.7%
    • 阿尔法-0.73
    • 贝塔0.26
    • 夏普比率-4.97
    • 胜率0.35
    • 盈亏比1.25
    • 收益波动率24.38%
    • 信息比率-0.33
    • 最大回撤9.8%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-01c4259f3dad4e508fb666903d917035"}/bigcharts-data-end