{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-38256:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-266:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-293:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-298:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-25911:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-25911:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-266:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-298:input_1","from_node_id":"-129:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-436:input_2","from_node_id":"-251:data"},{"to_node_id":"-2431:input_1","from_node_id":"-436:data_1"},{"to_node_id":"-288:input_data","from_node_id":"-266:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-288:data"},{"to_node_id":"-251:input_data","from_node_id":"-293:data"},{"to_node_id":"-293:input_data","from_node_id":"-298:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-436:input_1","from_node_id":"-25911:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-38256:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0\nopen_0\nhigh_0\nlow_0 \namount_0\nturn_0 \nreturn_0\n \nclose_1\nopen_1\nhigh_1\nlow_1\nreturn_1\namount_1\nturn_1\n \nclose_2\nopen_2\nhigh_2\nlow_2\namount_2\nturn_2\nreturn_2\n \nclose_3\nopen_3\nhigh_3\nlow_3\namount_3\nturn_3\nreturn_3\n \nclose_4\nopen_4\nhigh_4\nlow_4\namount_4\nturn_4\nreturn_4\n \nmean(close_0, 5)\nmean(low_0, 5)\nmean(open_0, 5)\nmean(high_0, 5)\nmean(turn_0, 5)\nmean(amount_0, 5)\nmean(return_0, 5)\n \nts_max(close_0, 5)\nts_max(low_0, 5)\nts_max(open_0, 5)\nts_max(high_0, 5)\nts_max(turn_0, 5)\nts_max(amount_0, 5)\nts_max(return_0, 5)\n \nts_min(close_0, 5)\nts_min(low_0, 5)\nts_min(open_0, 5)\nts_min(high_0, 5)\nts_min(turn_0, 5)\nts_min(amount_0, 5)\nts_min(return_0, 5) \n \nstd(close_0, 5)\nstd(low_0, 5)\nstd(open_0, 5)\nstd(high_0, 5)\nstd(turn_0, 5)\nstd(amount_0, 5)\nstd(return_0, 5)\n \nts_rank(close_0, 5)\nts_rank(low_0, 5)\nts_rank(open_0, 5)\nts_rank(high_0, 5)\nts_rank(turn_0, 5)\nts_rank(amount_0, 5)\nts_rank(return_0, 5)\n \ndecay_linear(close_0, 5)\ndecay_linear(low_0, 5)\ndecay_linear(open_0, 5)\ndecay_linear(high_0, 5)\ndecay_linear(turn_0, 5)\ndecay_linear(amount_0, 5)\ndecay_linear(return_0, 5)\n \ncorrelation(volume_0, return_0, 5)\ncorrelation(volume_0, high_0, 5)\ncorrelation(volume_0, low_0, 5)\ncorrelation(volume_0, close_0, 5)\ncorrelation(volume_0, open_0, 5)\ncorrelation(volume_0, turn_0, 5)\n \ncorrelation(return_0, high_0, 5)\ncorrelation(return_0, low_0, 5)\ncorrelation(return_0, close_0, 5)\ncorrelation(return_0, open_0, 5)\ncorrelation(return_0, turn_0, 5)\n \ncorrelation(high_0, low_0, 5)\ncorrelation(high_0, close_0, 5)\ncorrelation(high_0, open_0, 5)\ncorrelation(high_0, turn_0, 5)\n \ncorrelation(low_0, close_0, 5)\ncorrelation(low_0, open_0, 5)\ncorrelation(low_0, turn_0, 5)\n \ncorrelation(close_0, open_0, 5)\ncorrelation(close_0, turn_0, 5)\n\ncorrelation(open_0, turn_0, 5)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-07-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":26,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":29,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":30,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":32,"comment":"","comment_collapsed":true},{"node_id":"-436","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n # train data\n train_data = input_1.read()\n x_train, x_val, y_train, y_val = train_test_split(train_data[\"x\"], train_data['y'], shuffle=True, random_state=2021)\n # val data\n test_data = input_2.read()\n x_test = test_data[\"x\"]\n \n model = Transformer(input_dim=98, embed_dim=256, nhead=8, num_layers=6, dropout=0.1)\n model.compile(device=\"cuda:0\")\n model.fit(x_train, y_train, val_data=(x_val, y_val), batch_size=2048, epochs=10, verbose=1, num_workers=2)\n \n # model.fit(train_data[\"x\"], train_data['y'], batch_size=1024, epochs=2, verbose=1, num_workers=2)\n output = model.predict(x_test)\n \n data_1 = DataSource.write_pickle(output)\n return Outputs(data_1=data_1, data_2=None, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-436"},{"name":"input_2","node_id":"-436"},{"name":"input_3","node_id":"-436"}],"output_ports":[{"name":"data_1","node_id":"-436"},{"name":"data_2","node_id":"-436"},{"name":"data_3","node_id":"-436"}],"cacheable":false,"seq_num":33,"comment":"Transformer训练和预测","comment_collapsed":false},{"node_id":"-266","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-266"},{"name":"input_2","node_id":"-266"}],"output_ports":[{"name":"data","node_id":"-266"}],"cacheable":true,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":35,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-293"},{"name":"features","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":true,"seq_num":36,"comment":"","comment_collapsed":true},{"node_id":"-298","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-298"},{"name":"input_2","node_id":"-298"}],"output_ports":[{"name":"data","node_id":"-298"}],"cacheable":true,"seq_num":37,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n \n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":false,"seq_num":41,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.001, sell_cost=0.001, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 20\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":42,"comment":"","comment_collapsed":true},{"node_id":"-25911","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"False","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-25911"},{"name":"features","node_id":"-25911"}],"output_ports":[{"name":"data","node_id":"-25911"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-38256","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-38256"},{"name":"input_2","node_id":"-38256"}],"output_ports":[{"name":"data","node_id":"-38256"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='324,-13,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='21,167,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='775,-126,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='275,445,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1132,18,200,200'/><node_position Node='-106' Position='436,108,200,200'/><node_position Node='-113' Position='430,172,200,200'/><node_position Node='-122' Position='1135,144,200,200'/><node_position Node='-129' Position='1135,237,200,200'/><node_position Node='-251' Position='1121,558,200,200'/><node_position Node='-436' Position='558,693,200,200'/><node_position Node='-266' Position='436,251,200,200'/><node_position Node='-288' Position='433,319,200,200'/><node_position Node='-293' Position='1127,452,200,200'/><node_position Node='-298' Position='1130,337,200,200'/><node_position Node='-2431' Position='562,844,200,200'/><node_position Node='-141' Position='488,1014,200,200'/><node_position Node='-25911' Position='281,561,200,200'/><node_position Node='-38256' Position='9,260,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-10-29 16:16:14.113072] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-29 16:16:14.138630] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.140300] INFO: moduleinvoker: instruments.v2 运行完成[0.027252s].
[2021-10-29 16:16:14.149162] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-10-29 16:16:14.160312] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.162105] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.01294s].
[2021-10-29 16:16:14.168630] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-10-29 16:16:14.179578] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.180862] INFO: moduleinvoker: standardlize.v8 运行完成[0.01223s].
[2021-10-29 16:16:14.185089] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-10-29 16:16:14.190305] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.191514] INFO: moduleinvoker: input_features.v1 运行完成[0.006426s].
[2021-10-29 16:16:14.267559] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-10-29 16:16:14.278509] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.280189] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.012654s].
[2021-10-29 16:16:14.289585] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-29 16:16:14.295948] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.297432] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007845s].
[2021-10-29 16:16:14.322195] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-10-29 16:16:14.329689] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.331050] INFO: moduleinvoker: standardlize.v8 运行完成[0.008852s].
[2021-10-29 16:16:14.339325] INFO: moduleinvoker: fillnan.v1 开始运行..
[2021-10-29 16:16:14.348285] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.349580] INFO: moduleinvoker: fillnan.v1 运行完成[0.010253s].
[2021-10-29 16:16:14.358061] INFO: moduleinvoker: join.v3 开始运行..
[2021-10-29 16:16:14.401273] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.403190] INFO: moduleinvoker: join.v3 运行完成[0.045116s].
[2021-10-29 16:16:14.417725] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-10-29 16:16:14.426664] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.428153] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.010442s].
[2021-10-29 16:16:14.432863] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-29 16:16:14.441012] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.442354] INFO: moduleinvoker: instruments.v2 运行完成[0.00949s].
[2021-10-29 16:16:14.452873] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-10-29 16:16:14.464469] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.465932] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.01306s].
[2021-10-29 16:16:14.472398] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-29 16:16:14.495139] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.500551] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.028139s].
[2021-10-29 16:16:14.505484] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-10-29 16:16:14.518520] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.519816] INFO: moduleinvoker: standardlize.v8 运行完成[0.014332s].
[2021-10-29 16:16:14.526570] INFO: moduleinvoker: fillnan.v1 开始运行..
[2021-10-29 16:16:14.533701] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.534929] INFO: moduleinvoker: fillnan.v1 运行完成[0.008356s].
[2021-10-29 16:16:14.545440] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-10-29 16:16:14.552787] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:16:14.554001] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.008564s].
[2021-10-29 16:16:14.563062] INFO: moduleinvoker: cached.v3 开始运行..
[2021-10-29 16:59:20.210136] INFO: moduleinvoker: cached.v3 运行完成[2585.647047s].
[2021-10-29 16:59:20.220305] INFO: moduleinvoker: cached.v3 开始运行..
[2021-10-29 16:59:42.505209] INFO: moduleinvoker: cached.v3 运行完成[22.284891s].
[2021-10-29 16:59:44.279469] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-10-29 16:59:44.301467] INFO: backtest: biglearning backtest:V8.5.0
[2021-10-29 16:59:44.303299] INFO: backtest: product_type:stock by specified
[2021-10-29 16:59:44.429730] INFO: moduleinvoker: cached.v2 开始运行..
[2021-10-29 16:59:44.444428] INFO: moduleinvoker: 命中缓存
[2021-10-29 16:59:44.445962] INFO: moduleinvoker: cached.v2 运行完成[0.016258s].
[2021-10-29 16:59:47.999698] INFO: algo: TradingAlgorithm V1.8.5
[2021-10-29 16:59:49.664568] INFO: algo: trading transform...
[2021-10-29 17:00:51.180704] INFO: Performance: Simulated 849 trading days out of 849.
[2021-10-29 17:00:51.182458] INFO: Performance: first open: 2018-01-02 09:30:00+00:00
[2021-10-29 17:00:51.183786] INFO: Performance: last close: 2021-07-01 15:00:00+00:00
[2021-10-29 17:01:03.372516] INFO: moduleinvoker: backtest.v8 运行完成[79.09305s].
[2021-10-29 17:01:03.374305] INFO: moduleinvoker: trade.v4 运行完成[80.846919s].
epoch 0 | train_loss 1.04397| vall_loss 0.98657| 0:04:07s
epoch 1 | train_loss 0.98324| vall_loss 0.98302| 0:08:13s
epoch 2 | train_loss 0.98024| vall_loss 0.98060| 0:12:20s
epoch 3 | train_loss 0.97917| vall_loss 0.98368| 0:16:28s
epoch 4 | train_loss 0.97855| vall_loss 0.98163| 0:20:34s
epoch 5 | train_loss 0.97704| vall_loss 0.98008| 0:24:41s
epoch 6 | train_loss 0.97423| vall_loss 0.97625| 0:28:47s
epoch 7 | train_loss 0.96945| vall_loss 0.97266| 0:32:54s
epoch 8 | train_loss 0.96386| vall_loss 0.97054| 0:37:00s
epoch 9 | train_loss 0.96000| vall_loss 0.97070| 0:41:07s
best loss: 0.970537 @ 8
- 收益率193.44%
- 年化收益率37.65%
- 基准收益率29.74%
- 阿尔法0.31
- 贝塔0.94
- 夏普比率1.08
- 胜率0.51
- 盈亏比1.24
- 收益波动率31.33%
- 信息比率0.07
- 最大回撤25.39%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-97f63252fa66443b8796e66271405139"}/bigcharts-data-end