复制链接
克隆策略

    {"description":"实验创建于2022/8/7","graph":{"edges":[{"to_node_id":"-383:instruments","from_node_id":"-370:data"},{"to_node_id":"-407:instruments","from_node_id":"-370:data"},{"to_node_id":"-383:features","from_node_id":"-378:data"},{"to_node_id":"-390:input_ds","from_node_id":"-383:data"},{"to_node_id":"-398:input_data","from_node_id":"-390:sorted_data"},{"to_node_id":"-407:options_data","from_node_id":"-398:data"}],"nodes":[{"node_id":"-370","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2023-02-21","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2023-02-22","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-370"}],"output_ports":[{"name":"data","node_id":"-370"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-378","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"pb_lf_0\npe_ttm_0\namount_0\nfs_roe_ttm_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-378"}],"output_ports":[{"name":"data","node_id":"-378"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-383","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-383"},{"name":"features","node_id":"-383"}],"output_ports":[{"name":"data","node_id":"-383"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-390","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"fs_roe_ttm_0","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-390"},{"name":"sort_by_ds","node_id":"-390"}],"output_ports":[{"name":"sorted_data","node_id":"-390"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-398","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"pb_lf_0 < 2 & pe_ttm_0 < 20 & amount_0 > 0 & pb_lf_0 > 0 & pe_ttm_0 > 0","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-398"}],"output_ports":[{"name":"data","node_id":"-398"},{"name":"left_data","node_id":"-398"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-407","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载股票指标数据,数据继承自m4模块\n context.indicator_data= context.options['data'].read_df().set_index('date')\n print('indicator data:',context.indicator_data.head())\n # 设置交易费用,买入是万三,卖出是千分之1.3,如果不足5元按5元算\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 设置股票数量\n context.stock_num = 30\n \n # 调仓天数,22个交易日大概就是一个月。可以理解为一个月换仓一次\n context.rebalance_days = 22\n \n # 如果策略运行中,需要将数据进行保存,可以借用extension这个对象,类型为dict\n # 比如当前运行的k线的索引,比如个股持仓天数、买入均价\n if 'index' not in context.extension:\n context.extension['index'] = 0","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按每个K线递增\n context.extension['index']+=1\n \n # 每隔22个交易日进行换仓\n if context.extension['index'] % context.rebalance_days !=0:\n return\n \n # 日期\n date = data.current_dt.strftime('%Y-%m-%d')\n \n # 买入股票列表\n stock_to_buy = context.indicator_data.loc[date]['instrument'][:context.stock_num]\n \n # 目前持仓列表 \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions]\n # 继续持有股票列表\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 卖出股票列表 \n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]\n # 执行卖出\n for stock in stock_to_sell:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0)\n \n # 如果当天没有买入就返回\n if len(stock_to_buy) == 0:\n return\n \n # 等权重\n weight = 1 / len(stock_to_buy)\n # 执行买入\n for cp in stock_to_buy:\n if data.can_trade(context.symbol(cp)):\n context.order_target_percent(context.symbol(cp), weight)","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-407"},{"name":"options_data","node_id":"-407"},{"name":"history_ds","node_id":"-407"},{"name":"benchmark_ds","node_id":"-407"},{"name":"trading_calendar","node_id":"-407"}],"output_ports":[{"name":"raw_perf","node_id":"-407"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-370' Position='144,279,200,200'/><node_position Node='-378' Position='503,279,200,200'/><node_position Node='-383' Position='344,405,200,200'/><node_position Node='-390' Position='397,535,200,200'/><node_position Node='-398' Position='403,674,200,200'/><node_position Node='-407' Position='316,824,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [1]:
    # 本代码由可视化策略环境自动生成 2023年2月22日 18:36
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m6_initialize_bigquant_run(context):
        # 加载股票指标数据,数据继承自m4模块
        context.indicator_data= context.options['data'].read_df().set_index('date')
        print('indicator data:',context.indicator_data.head())
        # 设置交易费用,买入是万三,卖出是千分之1.3,如果不足5元按5元算
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
         # 设置股票数量
        context.stock_num = 30
        
        # 调仓天数,22个交易日大概就是一个月。可以理解为一个月换仓一次
        context.rebalance_days = 22
        
        # 如果策略运行中,需要将数据进行保存,可以借用extension这个对象,类型为dict
        # 比如当前运行的k线的索引,比如个股持仓天数、买入均价
        if 'index' not in context.extension:
            context.extension['index'] = 0
    # 回测引擎:每日数据处理函数,每天执行一次
    def m6_handle_data_bigquant_run(context, data):
        # 按每个K线递增
        context.extension['index']+=1
        
        # 每隔22个交易日进行换仓
        if context.extension['index'] % context.rebalance_days !=0:
            return
        
        # 日期
        date = data.current_dt.strftime('%Y-%m-%d')
        
        # 买入股票列表
        stock_to_buy = context.indicator_data.loc[date]['instrument'][:context.stock_num]
        
        # 目前持仓列表    
        stock_hold_now = [equity.symbol for equity in context.portfolio.positions]
        # 继续持有股票列表
        no_need_to_sell = [i for i in stock_hold_now  if i in stock_to_buy]
        # 卖出股票列表 
        stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]
        # 执行卖出
        for stock in stock_to_sell:
            if data.can_trade(context.symbol(stock)):
                context.order_target_percent(context.symbol(stock), 0)
                
        # 如果当天没有买入就返回
        if len(stock_to_buy) == 0:
            return
        
        # 等权重
        weight = 1 / len(stock_to_buy)
        # 执行买入
        for  cp in stock_to_buy:
            if data.can_trade(context.symbol(cp)):
                context.order_target_percent(context.symbol(cp), weight)
    # 回测引擎:准备数据,只执行一次
    def m6_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m6_before_trading_start_bigquant_run(context, data):
        pass
    
    
    m1 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2023-02-21'),
        end_date=T.live_run_param('trading_date', '2023-02-22'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.input_features.v1(
        features="""pb_lf_0
    pe_ttm_0
    amount_0
    fs_roe_ttm_0"""
    )
    
    m3 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m2.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    m4 = M.sort.v5(
        input_ds=m3.data,
        sort_by='fs_roe_ttm_0',
        group_by='date',
        keep_columns='--',
        ascending=True
    )
    
    m5 = M.filter.v3(
        input_data=m4.sorted_data,
        expr='pb_lf_0 < 2 & pe_ttm_0 < 20 & amount_0 > 0 & pb_lf_0 > 0 & pe_ttm_0 > 0',
        output_left_data=False
    )
    
    m6 = M.trade.v4(
        instruments=m1.data,
        options_data=m5.data,
        start_date='',
        end_date='',
        initialize=m6_initialize_bigquant_run,
        handle_data=m6_handle_data_bigquant_run,
        prepare=m6_prepare_bigquant_run,
        before_trading_start=m6_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='open',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.HIX'
    )
    
    indicator data:               amount_0  fs_roe_ttm_0  instrument   pb_lf_0   pe_ttm_0
    date                                                                 
    2020-10-09  22280739.0        2.2250  600781.SHA  0.433295  19.474195
    2020-10-09  32406875.0        3.2346  601588.SHA  0.616726  16.136610
    2020-10-09  32112658.0        3.4204  601992.SHA  0.722269  15.291884
    2020-10-09  39284865.0        3.5951  000926.SZA  0.456032  12.580019
    2020-10-09  21912329.0        3.5997  600717.SHA  0.675086  18.753801
    
    • 收益率39.31%
    • 年化收益率24.45%
    • 基准收益率-19.62%
    • 阿尔法0.32
    • 贝塔0.44
    • 夏普比率1.04
    • 胜率0.54
    • 盈亏比1.47
    • 收益波动率20.13%
    • 信息比率0.11
    • 最大回撤18.77%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9ccf08f759f44c0aa22324e1cc42f5c4"}/bigcharts-data-end