{"description":"实验创建于2021/12/6","graph":{"edges":[{"to_node_id":"-227:instruments","from_node_id":"-406:data"}],"nodes":[{"node_id":"-227","module_id":"BigQuantSpace.hftrade.hftrade-v2","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 交易引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n print(\"initialize\") \n context.ins = context.instruments[0]#从传入参数中获取需要交易的合约\n context.order_num = 100#下单手数\n context.set_universe(context.ins)#设置需要处理的合约\n context.last_grid = 0 # 储存前一个网格所处区间,用来和最新网格所处区间作比较\n context.set_stock_t1(0)\n context.set_commission(PerOrder(buy_cost=0.0008, sell_cost=0.0008, min_cost=0))\n context.first = 0\n\n \n \n \n\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 盘前处理函数:每个天开盘前调用一次\ndef bigquant_run(context, data):\n context.subscribe(context.ins) #注册合约\n # 记录上一次交易时网格范围的变化情况(例如从4区到5区,记为4,5)\n context.grid_change_last = [0,0]\n # 以前一日的收盘价为中枢价格\n context.center = data.history(context.ins,[\"close\"],1,\"1d\").iat[0,0]\n \n #订阅股票\n context.subscribe_bar(context.instruments, '1m')\n ","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:tick数据处理函数,每个tick执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"#K线处理函数:每个bar调用一次,该策略1分钟为1bar\ndef bigquant_run(context, data):\n cur_date = data.current_dt\n cur_hm = cur_date.strftime('%H:%M') #time \n \n # 分别获取持仓\n position = context.get_position(context.ins)\n # 获取当前价格\n price = data.current(context.ins, \"close\")\n \n #以50%仓位开仓\n if context.first == 0:\n rv = context.order(context.ins, context.order_num*5, price, order_type=OrderType.MARKET)\n print('开仓50%')\n context.first = 1 \n return\n cash = context.portfolio.cash\n cash_num = context.order_num * price \n # 设置网格和当前价格所处的网格区域\n band = np.arange(0.9, 1.011, 0.02)* context.center\n grid = pd.cut([price], band, labels=np.arange(1,len(band)))[0]\n # 如果新的价格所处网格区间和前一个价格所处的网格区间不同,说明触碰到了网格线,需要进行交易\n # 如果新网格大于前一天的网格,做空或平多\n if context.last_grid < grid:\n # 记录新旧格子范围(按照大小排序)\n grid_change_new = [context.last_grid,grid]\n # 几种例外:\n # 当last_grid = 0 时是初始阶段,不构成信号\n if context.last_grid == 0:\n context.last_grid = grid\n return\n if context.last_grid != 0:\n # 如果前一次开仓是4-5,这一次是5-4,算是没有突破,不成交\n if grid_change_new != context.grid_change_last:\n # 更新前一次的数据\n context.last_grid = grid\n context.grid_change_last = grid_change_new\n # 如果有仓位,卖出1份\n if position.current_qty != 0:\n rv = context.order(context.ins, context.order_num*(-1), order_type=OrderType.MARKET) \n # 如果新网格小于前一天的网格,开仓\n if context.last_grid > grid:\n # 记录新旧格子范围(按照大小排序)\n grid_change_new = [grid,context.last_grid]\n # 几种例外:\n # 当last_grid = 0 时是初始阶段,不构成信号\n if context.last_grid == 0:\n context.last_grid = grid\n return\n if context.last_grid != 0:\n # 如果前一次开仓是4-5,这一次是5-4,算是没有突破,不成交\n if grid_change_new != context.grid_change_last:\n # 更新前一次的数据\n context.last_grid = grid\n context.grid_change_last = grid_change_new\n if cash > cash_num+1000:\n rv = context.order(context.ins, context.order_num, order_type=OrderType.MARKET)\n # 设计一个条件:当持仓量达到10手,卖出部分\n if context.get_position(context.ins).current_qty >= 10*context.order_num:\n rv = context.order(context.ins, context.order_num*(-3), order_type=OrderType.MARKET)\n return\n # 设计一个条件:当持仓量为0,买入部分 \n if(context.get_position(context.ins).current_qty == 0):\n rv = context.order(context.ins, context.order_num*(3), order_type=OrderType.MARKET)","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"1000000","type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"minute","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"1","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"002594.SZA","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"False","type":"Literal","bound_global_parameter":null},{"name":"replay_bdb","value":"False","type":"Literal","bound_global_parameter":null},{"name":"show_debug_info","value":"False","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-227"},{"name":"options_data","node_id":"-227"},{"name":"history_ds","node_id":"-227"},{"name":"benchmark_ds","node_id":"-227"}],"output_ports":[{"name":"raw_perf","node_id":"-227"}],"cacheable":false,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-406","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"600519.SHA\n","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-406"}],"output_ports":[{"name":"data","node_id":"-406"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-227' Position='416,370,200,200'/><node_position Node='-406' Position='458,280,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-02-07 21:13:26.424061] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-02-07 21:13:26.474862] INFO: moduleinvoker: instruments.v2 运行完成[0.050806s].
[2023-02-07 21:13:26.523020] INFO: moduleinvoker: hfbacktest.v1 开始运行..
[2023-02-07 21:13:26.531322] INFO: hfbacktest: biglearning V1.4.19
[2023-02-07 21:13:26.534167] INFO: hfbacktest: bigtrader v1.9.12 2023-02-01
[2023-02-07 21:13:26.560816] INFO: moduleinvoker: cached.v2 开始运行..
[2023-02-07 21:13:26.572966] INFO: moduleinvoker: 命中缓存
[2023-02-07 21:13:26.575816] INFO: moduleinvoker: cached.v2 运行完成[0.015009s].
[2023-02-07 21:13:26.658409] INFO: moduleinvoker: cached.v2 开始运行..
[2023-02-07 21:13:26.670451] INFO: moduleinvoker: 命中缓存
[2023-02-07 21:13:26.673526] INFO: moduleinvoker: cached.v2 运行完成[0.015107s].