{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-6323:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-6323:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-6323:predict_ds","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-250:options_data","from_node_id":"-6323:predictions"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2017-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-6323","module_id":"BigQuantSpace.random_forest_regressor.random_forest_regressor-v1","parameters":[{"name":"iterations","value":10,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":"0.8","type":"Literal","bound_global_parameter":null},{"name":"max_depth","value":"30","type":"Literal","bound_global_parameter":null},{"name":"min_samples_per_leaf","value":200,"type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"workers","value":1,"type":"Literal","bound_global_parameter":null},{"name":"random_state","value":0,"type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-6323"},{"name":"features","node_id":"-6323"},{"name":"model","node_id":"-6323"},{"name":"predict_ds","node_id":"-6323"}],"output_ports":[{"name":"output_model","node_id":"-6323"},{"name":"predictions","node_id":"-6323"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='615.3845825195312,791.974365234375,200,200'/><node_position Node='-6323' Position='659,654,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-10-29 14:24:19.332552] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-29 14:24:19.353004] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.354902] INFO: moduleinvoker: instruments.v2 运行完成[0.022369s].
[2021-10-29 14:24:19.362901] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-10-29 14:24:19.368684] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.370104] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007205s].
[2021-10-29 14:24:19.373709] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-10-29 14:24:19.380342] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.381692] INFO: moduleinvoker: input_features.v1 运行完成[0.007985s].
[2021-10-29 14:24:19.391712] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-10-29 14:24:19.401155] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.402584] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.010873s].
[2021-10-29 14:24:19.408747] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-29 14:24:19.413150] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.414388] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.00564s].
[2021-10-29 14:24:19.421502] INFO: moduleinvoker: join.v3 开始运行..
[2021-10-29 14:24:19.427844] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.429186] INFO: moduleinvoker: join.v3 运行完成[0.007683s].
[2021-10-29 14:24:19.436837] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-10-29 14:24:19.445174] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.448011] INFO: moduleinvoker: dropnan.v1 运行完成[0.011172s].
[2021-10-29 14:24:19.452706] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-10-29 14:24:19.459335] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.460647] INFO: moduleinvoker: instruments.v2 运行完成[0.007941s].
[2021-10-29 14:24:19.470765] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-10-29 14:24:19.480542] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.481980] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.011218s].
[2021-10-29 14:24:19.493148] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-10-29 14:24:19.498540] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.500149] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007005s].
[2021-10-29 14:24:19.513107] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-10-29 14:24:19.523873] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:24:19.525539] INFO: moduleinvoker: dropnan.v1 运行完成[0.012436s].
[2021-10-29 14:24:19.534307] INFO: moduleinvoker: random_forest_regressor.v1 开始运行..
[2021-10-29 14:42:03.812330] INFO: moduleinvoker: random_forest_regressor.v1 运行完成[1064.27801s].
[2021-10-29 14:42:06.315574] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-10-29 14:42:06.403910] INFO: backtest: biglearning backtest:V8.5.0
[2021-10-29 14:42:06.511556] INFO: backtest: product_type:stock by specified
[2021-10-29 14:42:09.392060] INFO: moduleinvoker: cached.v2 开始运行..
[2021-10-29 14:42:09.403687] INFO: moduleinvoker: 命中缓存
[2021-10-29 14:42:09.503750] INFO: moduleinvoker: cached.v2 运行完成[0.111716s].
[2021-10-29 14:42:28.611878] INFO: algo: TradingAlgorithm V1.8.5
[2021-10-29 14:42:33.915672] INFO: algo: trading transform...
[2021-10-29 14:42:41.510445] INFO: algo: handle_splits get splits [dt:2015-04-13 00:00:00+00:00] [asset:Equity(453 [000001.SZA]), ratio:0.8262626528739929]
[2021-10-29 14:42:41.513856] INFO: Position: position stock handle split[sid:453, orig_amount:14300, new_amount:17306.0, orig_cost:15.49195831894589, new_cost:12.8004, ratio:0.8262626528739929, last_sale_price:16.360000610351562]
[2021-10-29 14:42:41.603329] INFO: Position: after split: PositionStock(asset:Equity(453 [000001.SZA]), amount:17306.0, cost_basis:12.8004, last_sale_price:19.799999237060547)
[2021-10-29 14:42:41.617431] INFO: Position: returning cash: 13.8309
[2021-10-29 14:42:46.298679] INFO: algo: handle_splits get splits [dt:2015-06-19 00:00:00+00:00] [asset:Equity(3333 [000006.SZA]), ratio:0.9930635690689087]
[2021-10-29 14:42:46.300638] INFO: Position: position stock handle split[sid:3333, orig_amount:3000, new_amount:3020.0, orig_cost:17.309999470901975, new_cost:17.1899, ratio:0.9930635690689087, last_sale_price:17.17999839782715]
[2021-10-29 14:42:46.302379] INFO: Position: after split: PositionStock(asset:Equity(3333 [000006.SZA]), amount:3020.0, cost_basis:17.1899, last_sale_price:17.299999237060547)
[2021-10-29 14:42:46.303899] INFO: Position: returning cash: 16.4008
[2021-10-29 14:42:48.094520] INFO: algo: handle_splits get splits [dt:2015-07-21 00:00:00+00:00] [asset:Equity(2045 [000002.SZA]), ratio:0.9674267172813416]
[2021-10-29 14:42:48.096284] INFO: Position: position stock handle split[sid:2045, orig_amount:9500, new_amount:9819.0, orig_cost:14.871052511561242, new_cost:14.3867, ratio:0.9674267172813416, last_sale_price:14.850000381469727]
[2021-10-29 14:42:48.099881] INFO: Position: after split: PositionStock(asset:Equity(2045 [000002.SZA]), amount:9819.0, cost_basis:14.3867, last_sale_price:15.350000381469727)
[2021-10-29 14:42:48.102837] INFO: Position: returning cash: 12.8489
[2021-10-29 14:43:13.903182] INFO: algo: handle_splits get splits [dt:2016-06-16 00:00:00+00:00] [asset:Equity(453 [000001.SZA]), ratio:0.820881187915802]
[2021-10-29 14:43:13.904969] INFO: Position: position stock handle split[sid:453, orig_amount:11300, new_amount:13765.0, orig_cost:10.330000015937184, new_cost:8.4797, ratio:0.820881187915802, last_sale_price:8.569999694824219]
[2021-10-29 14:43:13.906304] INFO: Position: after split: PositionStock(asset:Equity(453 [000001.SZA]), amount:13765.0, cost_basis:8.4797, last_sale_price:10.440000534057617)
[2021-10-29 14:43:13.907534] INFO: Position: returning cash: 5.9555
[2021-10-29 14:43:14.095657] INFO: algo: handle_splits get splits [dt:2016-06-17 00:00:00+00:00] [asset:Equity(3333 [000006.SZA]), ratio:0.983146071434021]
[2021-10-29 14:43:14.097536] INFO: Position: position stock handle split[sid:3333, orig_amount:6600, new_amount:6713.0, orig_cost:7.190000315766434, new_cost:7.0688, ratio:0.983146071434021, last_sale_price:7.0]
[2021-10-29 14:43:14.098916] INFO: Position: after split: PositionStock(asset:Equity(3333 [000006.SZA]), amount:6713.0, cost_basis:7.0688, last_sale_price:7.119999885559082)
[2021-10-29 14:43:14.100120] INFO: Position: returning cash: 0.9998
[2021-10-29 14:43:16.006905] INFO: algo: handle_splits get splits [dt:2016-07-29 00:00:00+00:00] [asset:Equity(2045 [000002.SZA]), ratio:0.9598214626312256]
[2021-10-29 14:43:16.008626] INFO: Position: position stock handle split[sid:2045, orig_amount:13300, new_amount:13856.0, orig_cost:17.62954796663877, new_cost:16.9212, ratio:0.9598214626312256, last_sale_price:17.19999885559082]
[2021-10-29 14:43:16.010132] INFO: Position: after split: PositionStock(asset:Equity(2045 [000002.SZA]), amount:13856.0, cost_basis:16.9212, last_sale_price:17.919998168945312)
[2021-10-29 14:43:16.011449] INFO: Position: returning cash: 12.7915
[2021-10-29 14:43:19.221814] INFO: Performance: Simulated 488 trading days out of 488.
[2021-10-29 14:43:19.223429] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2021-10-29 14:43:19.224695] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2021-10-29 14:43:24.020409] INFO: moduleinvoker: backtest.v8 运行完成[77.704841s].
[2021-10-29 14:43:24.022584] INFO: moduleinvoker: trade.v4 运行完成[79.830361s].
- 收益率26.19%
- 年化收益率12.76%
- 基准收益率-6.33%
- 阿尔法0.14
- 贝塔0.67
- 夏普比率0.48
- 胜率0.55
- 盈亏比0.95
- 收益波动率25.52%
- 信息比率0.05
- 最大回撤30.13%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-5243797e60da459d84d2b314438dee2d"}/bigcharts-data-end