{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-209:features_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-270:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-138:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-250:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-234:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-142:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"-209:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"-209:data"},{"DestinationInputPortId":"-250:options_data","SourceOutputPortId":"-227:data"},{"DestinationInputPortId":"-259:input_data","SourceOutputPortId":"-234:data"},{"DestinationInputPortId":"-227:input_2","SourceOutputPortId":"-259:data"},{"DestinationInputPortId":"-259:features","SourceOutputPortId":"-267:data"},{"DestinationInputPortId":"-227:input_1","SourceOutputPortId":"-270:predictions"},{"DestinationInputPortId":"-270:training_ds","SourceOutputPortId":"-138:data"},{"DestinationInputPortId":"-270:predict_ds","SourceOutputPortId":"-142:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"Comment":"","CommentCollapsed":true},{"Id":"-250","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price = data.current(order.asset, price_field)\n else:\n price = order.limit\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field在[low,high]就能保证只要限价单价格在此范围都能成交,也符合实际情形\n context.fix_slippage = FixedPriceSlippage(price_field_buy='low', price_field_sell='close') # 限定价如果比最低价高,买单就能成交\n context.set_slippage(us_equities=context.fix_slippage) # us是universe的简写","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \n if context.trading_day_index >=5: # 这里是调试代码,因此只看前五天买入 情形,实际回测时,去掉这两行\n return \n \n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n # 这里示意按照指定价格成交,可以根据需要加入止损的逻辑判断\n for instrument in instruments:\n try:\n myprice = ranker_prediction[ranker_prediction.instrument==instrument]['my_price'].values[0]\n print(data.current_dt,instrument, myprice)\n context.order_target(context.symbol(instrument), 0, limit_price=myprice)\n except:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n myprice = ranker_prediction[ranker_prediction.instrument==instrument]['my_price'].values[0]\n print('======',data.current_dt,instrument, myprice)\n\n context.order_value(context.symbol(instrument), cash, limit_price=myprice)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-250"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-250"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-250","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"Comment":"","CommentCollapsed":true},{"Id":"-209","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nmy_price=shift(open_0,-1)/shift(adjust_factor_0,-1)","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-209"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-209","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"Comment":"","CommentCollapsed":true},{"Id":"-227","ModuleId":"BigQuantSpace.data_join.data_join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-227"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-227"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-227","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"Comment":"","CommentCollapsed":true},{"Id":"-234","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"bar1d_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-234"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-234"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-234","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"Comment":"","CommentCollapsed":true},{"Id":"-259","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-259"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-259"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-259","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"Comment":"","CommentCollapsed":true},{"Id":"-267","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nmy_price=shift(open,-1) * 0.99","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-267"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-267","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":23,"Comment":"","CommentCollapsed":true},{"Id":"-270","ModuleId":"BigQuantSpace.stock_ranker.stock_ranker-v2","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"slim_data","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_model","NodeId":"-270"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"predict_ds","NodeId":"-270"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-270","OutputType":null},{"Name":"predictions","NodeId":"-270","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"Comment":"","CommentCollapsed":true},{"Id":"-138","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-138"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-138"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-138","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-142","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-142"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-142"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-142","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='936.4605102539062,-124.72508811950684,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1053.1925048828125,141.862548828125,200,200'/><NodePosition Node='-215' Position='381,188,200,200'/><NodePosition Node='-222' Position='385,280,200,200'/><NodePosition Node='-231' Position='1098.8076171875,250.86251831054688,200,200'/><NodePosition Node='-238' Position='1119.8350830078125,355.6976013183594,200,200'/><NodePosition Node='-250' Position='930.2371215820312,888.6151123046875,200,200'/><NodePosition Node='-209' Position='1103.0755615234375,60.67010498046875,200,200'/><NodePosition Node='-227' Position='1004.934814453125,769.8350830078125,200,200'/><NodePosition Node='-234' Position='1210.91748046875,518.2474365234375,200,200'/><NodePosition Node='-259' Position='1299,638,200,200'/><NodePosition Node='-267' Position='1570.5325927734375,522.1924743652344,200,200'/><NodePosition Node='-270' Position='489,672.0274658203125,200,200'/><NodePosition Node='-138' Position='376,467,200,200'/><NodePosition Node='-142' Position='902,539,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2021-06-22 18:09:51.654524] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-06-22 18:09:51.661231] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.662195] INFO: moduleinvoker: instruments.v2 运行完成[0.007676s].
[2021-06-22 18:09:51.668747] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-06-22 18:09:51.673981] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.674898] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.006159s].
[2021-06-22 18:09:51.676549] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-06-22 18:09:51.681890] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.682787] INFO: moduleinvoker: input_features.v1 运行完成[0.00624s].
[2021-06-22 18:09:51.689045] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-06-22 18:09:51.693521] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.694400] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.005361s].
[2021-06-22 18:09:51.696357] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-06-22 18:09:51.700808] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.701665] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.005311s].
[2021-06-22 18:09:51.703674] INFO: moduleinvoker: join.v3 开始运行..
[2021-06-22 18:09:51.708128] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.708933] INFO: moduleinvoker: join.v3 运行完成[0.005263s].
[2021-06-22 18:09:51.710873] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-06-22 18:09:51.716756] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.717634] INFO: moduleinvoker: dropnan.v2 运行完成[0.006764s].
[2021-06-22 18:09:51.719103] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-06-22 18:09:51.723371] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.724234] INFO: moduleinvoker: input_features.v1 运行完成[0.005134s].
[2021-06-22 18:09:51.725887] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-06-22 18:09:51.730229] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.731083] INFO: moduleinvoker: instruments.v2 运行完成[0.005198s].
[2021-06-22 18:09:51.738147] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-06-22 18:09:51.742397] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.743254] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.005112s].
[2021-06-22 18:09:51.745175] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-06-22 18:09:51.749346] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.750203] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.005031s].
[2021-06-22 18:09:51.752239] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-06-22 18:09:51.757459] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:51.758312] INFO: moduleinvoker: dropnan.v2 运行完成[0.006076s].
[2021-06-22 18:09:51.760385] INFO: moduleinvoker: stock_ranker.v2 开始运行..
[2021-06-22 18:09:51.770326] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:52.575507] INFO: moduleinvoker: stock_ranker.v2 运行完成[0.815112s].
[2021-06-22 18:09:52.577403] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2021-06-22 18:09:52.583445] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:52.584353] INFO: moduleinvoker: use_datasource.v1 运行完成[0.006956s].
[2021-06-22 18:09:52.585879] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-06-22 18:09:52.589989] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:52.590853] INFO: moduleinvoker: input_features.v1 运行完成[0.004977s].
[2021-06-22 18:09:52.592786] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-06-22 18:09:52.597239] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:52.598113] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.00533s].
[2021-06-22 18:09:52.602435] INFO: moduleinvoker: data_join.v3 开始运行..
[2021-06-22 18:09:52.607168] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:52.608039] INFO: moduleinvoker: data_join.v3 运行完成[0.005606s].
[2021-06-22 18:09:52.645095] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-06-22 18:09:52.648988] INFO: backtest: biglearning backtest:V8.5.0
[2021-06-22 18:09:52.649734] INFO: backtest: product_type:stock by specified
[2021-06-22 18:09:53.255703] INFO: moduleinvoker: cached.v2 开始运行..
[2021-06-22 18:09:53.268916] INFO: moduleinvoker: 命中缓存
[2021-06-22 18:09:53.270284] INFO: moduleinvoker: cached.v2 运行完成[0.0146s].
[2021-06-22 18:09:56.312471] INFO: algo: TradingAlgorithm V1.8.3
[2021-06-22 18:09:57.789213] INFO: algo: trading transform...
[2021-06-22 18:09:59.415835] INFO: Performance: Simulated 488 trading days out of 488.
[2021-06-22 18:09:59.416851] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2021-06-22 18:09:59.417676] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2021-06-22 18:10:03.516717] INFO: moduleinvoker: backtest.v8 运行完成[10.87161s].
[2021-06-22 18:10:03.517844] INFO: moduleinvoker: trade.v4 运行完成[10.90803s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-be751c4fbac54360a80fcfdf70d6f57c"}/bigcharts-data-end
====== 2015-01-05 15:00:00+00:00 300391.SZA 30.610800075531007
====== 2015-01-05 15:00:00+00:00 300038.SZA 27.439619464874266
====== 2015-01-05 15:00:00+00:00 300367.SZA 148.7338137817383
====== 2015-01-05 15:00:00+00:00 300302.SZA 37.468866233825686
====== 2015-01-05 15:00:00+00:00 300109.SZA 75.16554153442382
====== 2015-01-06 15:00:00+00:00 300380.SZA 65.14983558654785
====== 2015-01-06 15:00:00+00:00 300238.SZA 92.85747871398925
====== 2015-01-06 15:00:00+00:00 300367.SZA 158.86619247436522
====== 2015-01-06 15:00:00+00:00 300037.SZA 47.546145057678224
====== 2015-01-06 15:00:00+00:00 600446.SHA 266.02074645996095
====== 2015-01-07 15:00:00+00:00 300238.SZA 91.79636627197266
====== 2015-01-07 15:00:00+00:00 300380.SZA 63.140635299682614
====== 2015-01-07 15:00:00+00:00 300109.SZA 77.78646743774414
====== 2015-01-07 15:00:00+00:00 300139.SZA 88.01504997253419
====== 2015-01-07 15:00:00+00:00 300367.SZA 154.62289077758788
====== 2015-01-08 15:00:00+00:00 300139.SZA 90.86738777160645
====== 2015-01-08 15:00:00+00:00 300209.SZA 33.66209976196289
====== 2015-01-08 15:00:00+00:00 002534.SZA 18.985617141723633
====== 2015-01-08 15:00:00+00:00 000524.SZA 55.93267742156982
====== 2015-01-08 15:00:00+00:00 603019.SHA 39.8475
====== 2015-01-09 15:00:00+00:00 000981.SZA 20.162826404571533
====== 2015-01-09 15:00:00+00:00 002534.SZA 18.447989330291747
====== 2015-01-09 15:00:00+00:00 300139.SZA 91.60084671020508
====== 2015-01-09 15:00:00+00:00 000707.SZA 15.451341047286988
====== 2015-01-09 15:00:00+00:00 603518.SHA 30.165299320220946
- 收益率33.0%
- 年化收益率15.86%
- 基准收益率-6.33%
- 阿尔法0.2
- 贝塔0.71
- 夏普比率0.52
- 胜率1.0
- 盈亏比0.0
- 收益波动率33.7%
- 信息比率0.04
- 最大回撤45.82%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-3410c3f5c11e4971ac934d2796778f0a"}/bigcharts-data-end