{"description":"实验创建于2022/2/10","graph":{"edges":[{"to_node_id":"-20:instruments","from_node_id":"-4:data"},{"to_node_id":"-31:instruments","from_node_id":"-4:data"},{"to_node_id":"-47:features","from_node_id":"-12:data"},{"to_node_id":"-71:data1","from_node_id":"-20:data"},{"to_node_id":"-38:input_data","from_node_id":"-31:data"},{"to_node_id":"-71:data2","from_node_id":"-38:data"},{"to_node_id":"-54:features","from_node_id":"-47:data"},{"to_node_id":"-82:input_data","from_node_id":"-54:data"},{"to_node_id":"-31:features","from_node_id":"-66:data"},{"to_node_id":"-38:features","from_node_id":"-66:data"},{"to_node_id":"-47:instruments","from_node_id":"-66:data"},{"to_node_id":"-54:input_data","from_node_id":"-66:data"},{"to_node_id":"-90:test_ds","from_node_id":"-66:data"},{"to_node_id":"-78:input_data","from_node_id":"-71:data"},{"to_node_id":"-90:features","from_node_id":"-78:data"}],"nodes":[{"node_id":"-4","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-4"}],"output_ports":[{"name":"data","node_id":"-4"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-12","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-12"}],"output_ports":[{"name":"data","node_id":"-12"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-20","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-20"}],"output_ports":[{"name":"data","node_id":"-20"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-31","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-31"},{"name":"features","node_id":"-31"}],"output_ports":[{"name":"data","node_id":"-31"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-38","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-38"},{"name":"features","node_id":"-38"}],"output_ports":[{"name":"data","node_id":"-38"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-47","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-47"},{"name":"features","node_id":"-47"}],"output_ports":[{"name":"data","node_id":"-47"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-54","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-54"},{"name":"features","node_id":"-54"}],"output_ports":[{"name":"data","node_id":"-54"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-66","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-66"}],"output_ports":[{"name":"data","node_id":"-66"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-71","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-71"},{"name":"data2","node_id":"-71"}],"output_ports":[{"name":"data","node_id":"-71"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-78","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-78"},{"name":"features","node_id":"-78"}],"output_ports":[{"name":"data","node_id":"-78"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-82","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-82"},{"name":"features","node_id":"-82"}],"output_ports":[{"name":"data","node_id":"-82"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-90","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-90"},{"name":"features","node_id":"-90"},{"name":"test_ds","node_id":"-90"},{"name":"base_model","node_id":"-90"}],"output_ports":[{"name":"model","node_id":"-90"},{"name":"feature_gains","node_id":"-90"},{"name":"m_lazy_run","node_id":"-90"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"-106"},{"name":"data","node_id":"-106"}],"output_ports":[{"name":"predictions","node_id":"-106"},{"name":"m_lazy_run","node_id":"-106"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-4' Position='95,121,200,200'/><node_position Node='-12' Position='502,123,200,200'/><node_position Node='-20' Position='-81,250,200,200'/><node_position Node='-31' Position='124,354,200,200'/><node_position Node='-38' Position='129,465,200,200'/><node_position Node='-47' Position='536,342,200,200'/><node_position Node='-54' Position='516,468,200,200'/><node_position Node='-66' Position='360,13,200,200'/><node_position Node='-71' Position='126,601,200,200'/><node_position Node='-78' Position='122,709,200,200'/><node_position Node='-82' Position='522,710,200,200'/><node_position Node='-90' Position='218,806.9732055664062,200,200'/><node_position Node='-106' Position='691,801,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-02-10 15:47:35.096742] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-02-10 15:47:35.322433] INFO: moduleinvoker: 命中缓存
[2022-02-10 15:47:35.387026] INFO: moduleinvoker: instruments.v2 运行完成[0.290292s].
[2022-02-10 15:47:35.395761] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-02-10 15:47:35.485424] INFO: moduleinvoker: 命中缓存
[2022-02-10 15:47:35.487307] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.091548s].
[2022-02-10 15:47:35.491499] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-02-10 15:47:35.499364] INFO: moduleinvoker: 命中缓存
[2022-02-10 15:47:35.500714] INFO: moduleinvoker: input_features.v1 运行完成[0.00921s].
[2022-02-10 15:47:35.512815] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-02-10 15:47:35.601005] INFO: moduleinvoker: 命中缓存
[2022-02-10 15:47:35.602513] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.089698s].
[2022-02-10 15:47:35.609500] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-02-10 15:47:35.699483] INFO: moduleinvoker: 命中缓存
[2022-02-10 15:47:35.701120] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.091613s].
[2022-02-10 15:47:35.709146] INFO: moduleinvoker: join.v3 开始运行..
[2022-02-10 15:47:35.793843] INFO: moduleinvoker: 命中缓存
[2022-02-10 15:47:35.795489] INFO: moduleinvoker: join.v3 运行完成[0.086338s].
[2022-02-10 15:47:35.803236] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-02-10 15:47:35.813099] INFO: moduleinvoker: 命中缓存
[2022-02-10 15:47:35.886323] INFO: moduleinvoker: dropnan.v2 运行完成[0.083077s].
[2022-02-10 15:47:35.893451] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-02-10 15:47:35.902171] ERROR: moduleinvoker: module name: stock_ranker_train, module version: v6, trackeback: TypeError: __init__() takes at least 3 positional arguments (1 given)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-4-a66ee86ff4eb> in <module>
89 )
90
---> 91 m13 = M.stock_ranker_train.v6(
92 features=m11.data,
93 test_ds=m9.data,
TypeError: __init__() takes at least 3 positional arguments (1 given)