{"description":"实验创建于2022/11/5","graph":{"edges":[{"to_node_id":"-24:instruments","from_node_id":"-4:data"},{"to_node_id":"-35:instruments","from_node_id":"-4:data"},{"to_node_id":"-35:features","from_node_id":"-12:data"},{"to_node_id":"-62:features","from_node_id":"-12:data"},{"to_node_id":"-69:features","from_node_id":"-12:data"},{"to_node_id":"-42:features","from_node_id":"-12:data"},{"to_node_id":"-231:features","from_node_id":"-12:data"},{"to_node_id":"-62:instruments","from_node_id":"-16:data"},{"to_node_id":"-367:instruments","from_node_id":"-16:data"},{"to_node_id":"-51:data1","from_node_id":"-24:data"},{"to_node_id":"-42:input_data","from_node_id":"-35:data"},{"to_node_id":"-51:data2","from_node_id":"-42:data"},{"to_node_id":"-58:input_data","from_node_id":"-51:data"},{"to_node_id":"-324:input_1","from_node_id":"-58:data"},{"to_node_id":"-69:input_data","from_node_id":"-62:data"},{"to_node_id":"-78:input_data","from_node_id":"-69:data"},{"to_node_id":"-242:data","from_node_id":"-78:data"},{"to_node_id":"-231:training_ds","from_node_id":"-324:data_1"},{"to_node_id":"-231:test_ds","from_node_id":"-324:data_3"},{"to_node_id":"-242:model","from_node_id":"-231:model"},{"to_node_id":"-367:options_data","from_node_id":"-242:predictions"}],"nodes":[{"node_id":"-4","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-4"}],"output_ports":[{"name":"data","node_id":"-4"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-12","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-12"}],"output_ports":[{"name":"data","node_id":"-12"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-16","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-16"}],"output_ports":[{"name":"data","node_id":"-16"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-24","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n# shift(close, -5) / shift(open, -1)\nwhere(shift(close,-5) / shift(open,-1)>1,1,0)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n# all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-24"}],"output_ports":[{"name":"data","node_id":"-24"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-35","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-35"},{"name":"features","node_id":"-35"}],"output_ports":[{"name":"data","node_id":"-35"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-42","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-42"},{"name":"features","node_id":"-42"}],"output_ports":[{"name":"data","node_id":"-42"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-51","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-51"},{"name":"data2","node_id":"-51"}],"output_ports":[{"name":"data","node_id":"-51"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-58","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-58"},{"name":"features","node_id":"-58"}],"output_ports":[{"name":"data","node_id":"-58"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-62","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-62"},{"name":"features","node_id":"-62"}],"output_ports":[{"name":"data","node_id":"-62"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-69","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-69"},{"name":"features","node_id":"-69"}],"output_ports":[{"name":"data","node_id":"-69"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-78","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-78"},{"name":"features","node_id":"-78"}],"output_ports":[{"name":"data","node_id":"-78"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-367","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n# context.ranker_prediction = context.options['data'].read_df().sort_values('pred_label',ascending=False)\n# context.ranker_prediction = context.options['data'].read_df().sort_values('classes_prob_1.0', ascending=False)\n\n\n \n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-367"},{"name":"options_data","node_id":"-367"},{"name":"history_ds","node_id":"-367"},{"name":"benchmark_ds","node_id":"-367"},{"name":"trading_calendar","node_id":"-367"}],"output_ports":[{"name":"raw_perf","node_id":"-367"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-324","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = pd.DataFrame({'data': [1, 2, 3]})\n data_1 = DataSource.write_df(df)\n data_2 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-324"},{"name":"input_2","node_id":"-324"},{"name":"input_3","node_id":"-324"}],"output_ports":[{"name":"data_1","node_id":"-324"},{"name":"data_2","node_id":"-324"},{"name":"data_3","node_id":"-324"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.linear_sgd_train.linear_sgd_train-v2","parameters":[{"name":"loss","value":"auto","type":"Literal","bound_global_parameter":null},{"name":"penalty","value":"l2","type":"Literal","bound_global_parameter":null},{"name":"alpha","value":0.0001,"type":"Literal","bound_global_parameter":null},{"name":"n_iter","value":5,"type":"Literal","bound_global_parameter":null},{"name":"shuffle","value":"True","type":"Literal","bound_global_parameter":null},{"name":"eta0","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"algo","value":"classifier","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-231"},{"name":"features","node_id":"-231"},{"name":"test_ds","node_id":"-231"}],"output_ports":[{"name":"model","node_id":"-231"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-242","module_id":"BigQuantSpace.linear_sgd_predict.linear_sgd_predict-v2","parameters":[],"input_ports":[{"name":"model","node_id":"-242"},{"name":"data","node_id":"-242"}],"output_ports":[{"name":"predictions","node_id":"-242"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-4' Position='69,82,200,200'/><node_position Node='-12' Position='399,76,200,200'/><node_position Node='-16' Position='704,86,200,200'/><node_position Node='-24' Position='73,182,200,200'/><node_position Node='-35' Position='380,181,200,200'/><node_position Node='-42' Position='399,311,200,200'/><node_position Node='-51' Position='114,409,200,200'/><node_position Node='-58' Position='118,490,200,200'/><node_position Node='-62' Position='717,188,200,200'/><node_position Node='-69' Position='746,314,200,200'/><node_position Node='-78' Position='714,405,200,200'/><node_position Node='-367' Position='421.88385009765625,810.8838500976562,200,200'/><node_position Node='-324' Position='201,557,200,200'/><node_position Node='-231' Position='369.7759094238281,640.004150390625,200,200'/><node_position Node='-242' Position='498.8319091796875,719.4232177734375,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-11-13 16:50:14.994776] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-11-13 16:50:15.169911] INFO: moduleinvoker: instruments.v2 运行完成[0.175144s].
[2022-11-13 16:50:15.198004] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-11-13 16:50:17.792230] INFO: 自动标注(股票): 加载历史数据: 569698 行
[2022-11-13 16:50:17.795308] INFO: 自动标注(股票): 开始标注 ..
[2022-11-13 16:50:19.581967] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[4.383961s].
[2022-11-13 16:50:19.597583] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-11-13 16:50:19.606963] INFO: moduleinvoker: 命中缓存
[2022-11-13 16:50:19.609403] INFO: moduleinvoker: input_features.v1 运行完成[0.011845s].
[2022-11-13 16:50:19.636620] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-11-13 16:50:21.410899] INFO: 基础特征抽取: 年份 2014, 特征行数=141569
[2022-11-13 16:50:25.247130] INFO: 基础特征抽取: 年份 2015, 特征行数=569698
[2022-11-13 16:50:26.291792] INFO: 基础特征抽取: 年份 2016, 特征行数=0
[2022-11-13 16:50:26.422644] INFO: 基础特征抽取: 总行数: 711267
[2022-11-13 16:50:26.430069] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[6.793454s].
[2022-11-13 16:50:26.449307] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-11-13 16:50:28.520042] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.004s
[2022-11-13 16:50:28.528033] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.006s
[2022-11-13 16:50:28.534857] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.005s
[2022-11-13 16:50:28.539014] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.003s
[2022-11-13 16:50:28.564532] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.024s
[2022-11-13 16:50:28.570065] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.003s
[2022-11-13 16:50:29.119560] INFO: derived_feature_extractor: /y_2014, 141569
[2022-11-13 16:50:30.932462] INFO: derived_feature_extractor: /y_2015, 569698
[2022-11-13 16:50:31.518889] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[5.069556s].
[2022-11-13 16:50:31.535069] INFO: moduleinvoker: join.v3 开始运行..
[2022-11-13 16:50:33.761397] INFO: join: /y_2014, 行数=0/141569, 耗时=0.577109s
[2022-11-13 16:50:36.377686] INFO: join: /y_2015, 行数=560635/569698, 耗时=2.609886s
[2022-11-13 16:50:36.448172] INFO: join: 最终行数: 560635
[2022-11-13 16:50:36.460935] INFO: moduleinvoker: join.v3 运行完成[4.925859s].
[2022-11-13 16:50:36.492548] INFO: moduleinvoker: dropnan.v2 开始运行..
[2022-11-13 16:50:36.759681] INFO: dropnan: /y_2014, 0/0
[2022-11-13 16:50:39.257250] INFO: dropnan: /y_2015, 558339/560635
[2022-11-13 16:50:39.349735] INFO: dropnan: 行数: 558339/560635
[2022-11-13 16:50:39.358674] INFO: moduleinvoker: dropnan.v2 运行完成[2.866131s].
[2022-11-13 16:50:39.380839] INFO: moduleinvoker: cached.v3 开始运行..
[2022-11-13 16:50:39.497722] INFO: moduleinvoker: cached.v3 运行完成[0.116905s].
[2022-11-13 16:50:39.522409] INFO: moduleinvoker: linear_sgd_train.v2 开始运行..
[2022-11-13 16:50:39.575758] ERROR: linear_sgd_train: 部分特征没有在数据中,执行失败
[2022-11-13 16:50:39.579269] ERROR: moduleinvoker: module name: linear_sgd_train, module version: v2, trackeback: KeyError: "None of [Index(['return_5', 'return_10', 'return_20', 'avg_amount_0/avg_amount_5',
'avg_amount_5/avg_amount_20', 'rank_avg_amount_0/rank_avg_amount_5',
'rank_avg_amount_5/rank_avg_amount_10', 'rank_return_0',
'rank_return_5', 'rank_return_10', 'rank_return_0/rank_return_5',
'rank_return_5/rank_return_10', 'pe_ttm_0'],
dtype='object')] are in the [columns]"
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-1-43e86a72ab21> in <module>
181 )
182
--> 183 m12 = M.linear_sgd_train.v2(
184 training_ds=m15.data_1,
185 features=m2.data,
KeyError: "None of [Index(['return_5', 'return_10', 'return_20', 'avg_amount_0/avg_amount_5',\n 'avg_amount_5/avg_amount_20', 'rank_avg_amount_0/rank_avg_amount_5',\n 'rank_avg_amount_5/rank_avg_amount_10', 'rank_return_0',\n 'rank_return_5', 'rank_return_10', 'rank_return_0/rank_return_5',\n 'rank_return_5/rank_return_10', 'pe_ttm_0'],\n dtype='object')] are in the [columns]"