{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-888:raw_perf","from_node_id":"-250:raw_perf"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2017-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-888","module_id":"BigQuantSpace.strategy_style_show.strategy_style_show-v1","parameters":[],"input_ports":[{"name":"raw_perf","node_id":"-888"}],"output_ports":[{"name":"data","node_id":"-888"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='638,563.1026000976562,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='1037,751,200,200'/><node_position Node='-888' Position='1056.9967041015625,911.7027587890625,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-12-20 11:34:32.071644] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-20 11:34:32.094084] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.096814] INFO: moduleinvoker: instruments.v2 运行完成[0.025186s].
[2021-12-20 11:34:32.122710] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-12-20 11:34:32.132183] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.136206] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.013504s].
[2021-12-20 11:34:32.143463] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-12-20 11:34:32.153743] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.155000] INFO: moduleinvoker: input_features.v1 运行完成[0.011541s].
[2021-12-20 11:34:32.182309] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-20 11:34:32.197808] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.200770] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.018463s].
[2021-12-20 11:34:32.219192] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-20 11:34:32.230689] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.231988] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.012792s].
[2021-12-20 11:34:32.244277] INFO: moduleinvoker: join.v3 开始运行..
[2021-12-20 11:34:32.253455] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.254739] INFO: moduleinvoker: join.v3 运行完成[0.010461s].
[2021-12-20 11:34:32.265351] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-12-20 11:34:32.276093] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.277481] INFO: moduleinvoker: dropnan.v1 运行完成[0.01213s].
[2021-12-20 11:34:32.299030] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2021-12-20 11:34:32.314805] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.438281] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[0.139244s].
[2021-12-20 11:34:32.444322] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-12-20 11:34:32.455558] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.456966] INFO: moduleinvoker: instruments.v2 运行完成[0.012654s].
[2021-12-20 11:34:32.471816] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-12-20 11:34:32.483645] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.485079] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.013277s].
[2021-12-20 11:34:32.502859] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-12-20 11:34:32.518755] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.523027] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.020176s].
[2021-12-20 11:34:32.543725] INFO: moduleinvoker: dropnan.v1 开始运行..
[2021-12-20 11:34:32.554925] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.555911] INFO: moduleinvoker: dropnan.v1 运行完成[0.012189s].
[2021-12-20 11:34:32.582162] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2021-12-20 11:34:32.603427] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:32.608643] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.026487s].
[2021-12-20 11:34:35.097125] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-12-20 11:34:35.105602] INFO: backtest: biglearning backtest:V8.6.0
[2021-12-20 11:34:35.107864] INFO: backtest: product_type:stock by specified
[2021-12-20 11:34:35.237804] INFO: moduleinvoker: cached.v2 开始运行..
[2021-12-20 11:34:35.255012] INFO: moduleinvoker: 命中缓存
[2021-12-20 11:34:35.256825] INFO: moduleinvoker: cached.v2 运行完成[0.019074s].
[2021-12-20 11:34:37.513547] INFO: algo: TradingAlgorithm V1.8.6
[2021-12-20 11:34:38.700925] INFO: algo: trading transform...
[2021-12-20 11:34:42.025223] INFO: algo: handle_splits get splits [dt:2015-05-11 00:00:00+00:00] [asset:Equity(929 [002381.SZA]), ratio:0.6573165655136108]
[2021-12-20 11:34:42.027012] INFO: Position: position stock handle split[sid:929, orig_amount:7300, new_amount:11105.0, orig_cost:21.760003699082365, new_cost:14.3032, ratio:0.6573165655136108, last_sale_price:14.059999465942383]
[2021-12-20 11:34:42.028205] INFO: Position: after split: PositionStock(asset:Equity(929 [002381.SZA]), amount:11105.0, cost_basis:14.3032, last_sale_price:21.389997482299805)
[2021-12-20 11:34:42.029236] INFO: Position: returning cash: 10.6852
[2021-12-20 11:34:42.165218] INFO: algo: handle_splits get splits [dt:2015-05-15 00:00:00+00:00] [asset:Equity(1694 [000736.SZA]), ratio:0.9987077116966248]
[2021-12-20 11:34:42.570104] INFO: algo: handle_splits get splits [dt:2015-05-22 00:00:00+00:00] [asset:Equity(2968 [300119.SZA]), ratio:0.9944382905960083]
[2021-12-20 11:34:42.571611] INFO: Position: position stock handle split[sid:2968, orig_amount:7900, new_amount:7944.0, orig_cost:16.692152447524837, new_cost:16.5993, ratio:0.9944382905960083, last_sale_price:17.880001068115234]
[2021-12-20 11:34:42.572750] INFO: Position: after split: PositionStock(asset:Equity(2968 [300119.SZA]), amount:7944.0, cost_basis:16.5993, last_sale_price:17.98000144958496)
[2021-12-20 11:34:42.573778] INFO: Position: returning cash: 3.2763
[2021-12-20 11:34:42.829413] INFO: algo: handle_splits get splits [dt:2015-06-02 00:00:00+00:00] [asset:Equity(1566 [300120.SZA]), ratio:0.9976426959037781]
[2021-12-20 11:34:42.830931] INFO: Position: position stock handle split[sid:1566, orig_amount:7500, new_amount:7517.0, orig_cost:19.440000892864383, new_cost:19.3942, ratio:0.9976426959037781, last_sale_price:21.160001754760742]
[2021-12-20 11:34:42.832021] INFO: Position: after split: PositionStock(asset:Equity(1566 [300120.SZA]), amount:7517.0, cost_basis:19.3942, last_sale_price:21.21000099182129)
[2021-12-20 11:34:42.832978] INFO: Position: returning cash: 15.2681
[2021-12-20 11:34:42.945970] INFO: algo: handle_splits get splits [dt:2015-06-05 00:00:00+00:00] [asset:Equity(568 [002671.SZA]), ratio:0.9965330958366394]
[2021-12-20 11:34:42.947570] INFO: Position: position stock handle split[sid:568, orig_amount:8900, new_amount:8930.0, orig_cost:15.899998878801396, new_cost:15.8449, ratio:0.9965330958366394, last_sale_price:20.120004653930664]
[2021-12-20 11:34:42.948782] INFO: Position: after split: PositionStock(asset:Equity(568 [002671.SZA]), amount:8930.0, cost_basis:15.8449, last_sale_price:20.190000534057617)
[2021-12-20 11:34:42.949873] INFO: Position: returning cash: 19.3714
[2021-12-20 11:34:43.057047] INFO: algo: handle_splits get splits [dt:2015-06-10 00:00:00+00:00] [asset:Equity(2055 [002714.SZA]), ratio:0.49969014525413513]
[2021-12-20 11:34:43.058525] INFO: Position: position stock handle split[sid:2055, orig_amount:1000, new_amount:2001.0, orig_cost:96.2500010945582, new_cost:48.0952, ratio:0.49969014525413513, last_sale_price:48.37000274658203]
[2021-12-20 11:34:43.059577] INFO: Position: after split: PositionStock(asset:Equity(2055 [002714.SZA]), amount:2001.0, cost_basis:48.0952, last_sale_price:96.79999542236328)
[2021-12-20 11:34:43.060509] INFO: Position: returning cash: 11.6179
[2021-12-20 11:34:43.339947] INFO: algo: handle_splits get splits [dt:2015-06-23 00:00:00+00:00] [asset:Equity(2410 [300077.SZA]), ratio:0.9998031258583069]
[2021-12-20 11:34:43.341528] INFO: Position: position stock handle split[sid:2410, orig_amount:2700, new_amount:2700.0, orig_cost:51.98999804876317, new_cost:51.9798, ratio:0.9998031258583069, last_sale_price:50.77000045776367]
[2021-12-20 11:34:43.343643] INFO: Position: after split: PositionStock(asset:Equity(2410 [300077.SZA]), amount:2700.0, cost_basis:51.9798, last_sale_price:50.779998779296875)
[2021-12-20 11:34:43.345280] INFO: Position: returning cash: 26.9926
[2021-12-20 11:34:43.524118] INFO: algo: handle_splits get splits [dt:2015-06-29 00:00:00+00:00] [asset:Equity(2145 [000716.SZA]), ratio:0.997473418712616]
[2021-12-20 11:34:43.525859] INFO: Position: position stock handle split[sid:2145, orig_amount:3700, new_amount:3709.0, orig_cost:23.85000107281935, new_cost:23.7897, ratio:0.997473418712616, last_sale_price:23.689992904663086]
[2021-12-20 11:34:43.527275] INFO: Position: after split: PositionStock(asset:Equity(2145 [000716.SZA]), amount:3709.0, cost_basis:23.7897, last_sale_price:23.75)
[2021-12-20 11:34:43.528405] INFO: Position: returning cash: 8.8134
[2021-12-20 11:34:43.824632] INFO: algo: handle_splits get splits [dt:2015-07-08 00:00:00+00:00] [asset:Equity(1574 [002133.SZA]), ratio:0.9865546822547913]
[2021-12-20 11:34:43.870559] INFO: algo: handle_splits get splits [dt:2015-07-09 00:00:00+00:00] [asset:Equity(528 [603869.SHA]), ratio:0.9944905042648315]
[2021-12-20 11:34:43.872242] INFO: Position: position stock handle split[sid:528, orig_amount:3300, new_amount:3318.0, orig_cost:28.980002258211275, new_cost:28.8203, ratio:0.9944905042648315, last_sale_price:14.44000244140625]
[2021-12-20 11:34:43.873547] INFO: Position: after split: PositionStock(asset:Equity(528 [603869.SHA]), amount:3318.0, cost_basis:28.8203, last_sale_price:14.520000457763672)
[2021-12-20 11:34:43.874715] INFO: Position: returning cash: 4.073
[2021-12-20 11:34:45.880258] INFO: algo: handle_splits get splits [dt:2015-09-17 00:00:00+00:00] [asset:Equity(449 [600446.SHA]), ratio:0.33293941617012024]
[2021-12-20 11:34:45.882389] INFO: Position: position stock handle split[sid:449, orig_amount:4200, new_amount:12614.0, orig_cost:150.97643035601573, new_cost:50.266, ratio:0.33293941617012024, last_sale_price:33.80999755859375]
[2021-12-20 11:34:45.885420] INFO: Position: after split: PositionStock(asset:Equity(449 [600446.SHA]), amount:12614.0, cost_basis:50.266, last_sale_price:101.54999542236328)
[2021-12-20 11:34:45.889235] INFO: Position: returning cash: 30.6889
[2021-12-20 11:34:50.062169] INFO: algo: handle_splits get splits [dt:2016-03-18 00:00:00+00:00] [asset:Equity(2455 [600145.SHA]), ratio:0.2527026832103729]
[2021-12-20 11:34:50.063900] INFO: Position: position stock handle split[sid:2455, orig_amount:27800, new_amount:110010.0, orig_cost:6.980000283129761, new_cost:1.7639, ratio:0.2527026832103729, last_sale_price:1.869999885559082]
[2021-12-20 11:34:50.065146] INFO: Position: after split: PositionStock(asset:Equity(2455 [600145.SHA]), amount:110010.0, cost_basis:1.7639, last_sale_price:7.400000095367432)
[2021-12-20 11:34:50.066279] INFO: Position: returning cash: 1.3159
[2021-12-20 11:34:51.177361] INFO: algo: handle_splits get splits [dt:2016-05-06 00:00:00+00:00] [asset:Equity(591 [600654.SHA]), ratio:0.9957947731018066]
[2021-12-20 11:34:51.179180] INFO: Position: position stock handle split[sid:591, orig_amount:28200, new_amount:28319.0, orig_cost:23.070212579512752, new_cost:22.9732, ratio:0.9957947731018066, last_sale_price:23.68000030517578]
[2021-12-20 11:34:51.180806] INFO: Position: after split: PositionStock(asset:Equity(591 [600654.SHA]), amount:28319.0, cost_basis:22.9732, last_sale_price:23.780000686645508)
[2021-12-20 11:34:51.183474] INFO: Position: returning cash: 2.0884
[2021-12-20 11:34:51.391577] INFO: algo: handle_splits get splits [dt:2016-05-16 00:00:00+00:00] [asset:Equity(116 [300081.SZA]), ratio:0.3987395465373993]
[2021-12-20 11:34:51.395102] INFO: Position: position stock handle split[sid:116, orig_amount:3400, new_amount:8526.0, orig_cost:35.13000167988079, new_cost:14.0077, ratio:0.3987395465373993, last_sale_price:13.919997215270996]
[2021-12-20 11:34:51.398640] INFO: Position: after split: PositionStock(asset:Equity(116 [300081.SZA]), amount:8526.0, cost_basis:14.0077, last_sale_price:34.90999984741211)
[2021-12-20 11:34:51.401609] INFO: Position: returning cash: 12.1007
[2021-12-20 11:34:53.678175] INFO: algo: handle_splits get splits [dt:2016-08-12 00:00:00+00:00] [asset:Equity(1260 [600578.SHA]), ratio:0.9562363624572754]
[2021-12-20 11:34:53.679889] INFO: Position: position stock handle split[sid:1260, orig_amount:30300, new_amount:31686.0, orig_cost:4.560002461953038, new_cost:4.3604, ratio:0.9562363624572754, last_sale_price:4.37000036239624]
[2021-12-20 11:34:53.682542] INFO: Position: after split: PositionStock(asset:Equity(1260 [600578.SHA]), amount:31686.0, cost_basis:4.3604, last_sale_price:4.570000171661377)
[2021-12-20 11:34:53.684667] INFO: Position: returning cash: 3.1744
[2021-12-20 11:34:56.830723] INFO: Performance: Simulated 488 trading days out of 488.
[2021-12-20 11:34:56.832566] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2021-12-20 11:34:56.834322] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2021-12-20 11:35:03.842241] INFO: moduleinvoker: backtest.v8 运行完成[28.745121s].
[2021-12-20 11:35:03.844451] INFO: moduleinvoker: trade.v4 运行完成[31.010594s].
[2021-12-20 11:35:03.858617] INFO: moduleinvoker: strategy_style_show.v1 开始运行..
[2021-12-20 11:35:04.815242] INFO: moduleinvoker: strategy_style_show.v1 运行完成[0.956613s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-609955ab05824adc857d8bc088afe81b"}/bigcharts-data-end
- 收益率308.49%
- 年化收益率106.83%
- 基准收益率-6.33%
- 阿尔法1.22
- 贝塔0.94
- 夏普比率1.88
- 胜率0.62
- 盈亏比0.74
- 收益波动率41.79%
- 信息比率0.17
- 最大回撤47.66%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-f4701510ccdd4d0a8c8ee7299d52e9fe"}/bigcharts-data-end