复制链接
克隆策略
In [ ]:
# <b>StockRanker多因子选股策略</b>
In [7]:
import itertools
param_grid = {}

period_list = [5,20,60,100,120] 

# 在这里设置需要调优的参数备选
feature_list = [
'''
double_low = close + bond_prem_ratio
remain_size
rank_swing_volatility_5 = nanstd((high-low)/pre_close, {0})*sqrt(200)*100
'''.format(period) for period in period_list
]
param_grid["m14.params"] = [
    """{"stock_count": 3, "hold_days": 3}""",
    """{"stock_count": 4, "hold_days": 4}""",
    """{"stock_count": 3, "hold_days": 1}""",
    """{"stock_count": 4, "hold_days": 2}"""
]
param_grid['m3.features'] = feature_list
In [8]:
param_grid
Out[8]:
{'m14.params': ['{"stock_count": 3, "hold_days": 3}',
  '{"stock_count": 4, "hold_days": 4}',
  '{"stock_count": 3, "hold_days": 1}',
  '{"stock_count": 4, "hold_days": 2}'],
 'm3.features': ['\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100\n',
  '\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 20)*sqrt(200)*100\n',
  '\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 60)*sqrt(200)*100\n',
  '\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 100)*sqrt(200)*100\n',
  '\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100\n']}
In [7]:
def bigquant_run(context, data):
    # 按日期过滤得到今日的预测数据
    #time == data.current_dt.strftime('%Y-%m-%d%H%M%S')
    now = context.now()
    print(now)
    if str(now) == '14:33:30' :
        context.order_target('000001', 0.05)
        context.order_target('110041.HCB', 0.05)
In [5]:
import itertools
param_grid = {}

period_list = [5,6,120] 

# 在这里设置需要调优的参数备选
feature_list = [
'''
double_low = close + bond_prem_ratio
remain_size
rank_swing_volatility_5 = nanstd((high-low)/pre_close, {0})*sqrt(200)*100
'''.format(period) for period in period_list
]
param_grid["m14.params"] = [
    """{"stock_count": 3, "hold_days": 3}""",
    """{"stock_count": 4, "hold_days": 4}""",
]
param_grid['m3.features'] = feature_list
In [7]:
 
Out[7]:
{'m14.params': ['{"stock_count": 3, "hold_days": 3}',
  '{"stock_count": 4, "hold_days": 4}'],
 'm3.features': ['\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100\n',
  '\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 6)*sqrt(200)*100\n',
  '\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100\n']}
In [8]:
# 回测引擎:每日数据处理函数,每天执行一次
def bigquant_run(context, data):

    try:
        print('处理data',data)
        context.ranker_prediction = context.options.get('data').read()['data']
        # 相隔几天(hold_days)进行一下换仓
        if context.trading_day_index % context.hold_days != 0:
            return 

        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
        # 目前持仓
        positions = {e: p.amount * p.last_sale_price for e, p in context.portfolio.positions.items()}
        # 权重
        buy_cash_weights = context.stock_weights
        # 今日买入股票列表
        stock_to_buy = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        # 持仓上限
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument

        # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        stock_hold_now = [equity for equity in context.portfolio.positions ]
        # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有
        no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]
        # 需要卖出的股票
        stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]

        # 卖出
        for stock in stock_to_sell:
            # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态
            # 如果返回真值,则可以正常下单,否则会出错
            # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式
            if data.can_trade(context.symbol(stock)):
                # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,
                #   即卖出全部股票,可参考回测文档
                if context.order_target_percent(context.symbol(stock), 0) != 0:
                    print('sell_context.symbol',context.symbol(stock))

        # 如果当天没有买入的股票,就返回
        if len(stock_to_buy) == 0:
            return

        # 买入
        for i, instrument in enumerate(stock_to_buy):
            cash = context.portfolio.portfolio_value * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 500:
                if context.order_value(context.symbol(instrument), cash) !=0:
                    print('fail_order_value',cash)            
    except Exception as e:
           logger.exception("限价单下买单失败%s,%s",context,e)
                        
In [15]:
m21.read_raw_perf()['sharpe']
Out[15]:
2021-06-30     0.000000
2021-07-01   -12.135336
2021-07-02   -13.427960
2021-07-05    -6.247853
2021-07-06    -5.307045
                ...    
2021-12-24    -2.448882
2021-12-27    -2.453014
2021-12-28    -2.457153
2021-12-29    -2.461299
2021-12-30    -2.465450
Name: sharpe, Length: 125, dtype: float64

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-109:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"-259:input_1","from_node_id":"-295:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-129:data"},{"to_node_id":"-129:input_data","from_node_id":"-147:data_1"},{"to_node_id":"-206:data1","from_node_id":"-147:data_2"},{"to_node_id":"-228:input_1","from_node_id":"-505:data"},{"to_node_id":"-758:input","from_node_id":"-327:data"},{"to_node_id":"-228:input_2","from_node_id":"-327:data"},{"to_node_id":"-1481:instruments","from_node_id":"-758:instrument_list"},{"to_node_id":"-249:data2","from_node_id":"-1415:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-281:input_data","from_node_id":"-206:data"},{"to_node_id":"-206:data2","from_node_id":"-228:data_1"},{"to_node_id":"-249:data1","from_node_id":"-228:data_2"},{"to_node_id":"-295:input_data","from_node_id":"-249:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-259:data_1"},{"to_node_id":"-1481:options_data","from_node_id":"-109:data_1"},{"to_node_id":"-109:input_2","from_node_id":"-121:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\ndouble_low = close + bond_prem_ratio\nremain_size\nrank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"3","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"100","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"2","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.auto_labeler_on_datasource.auto_labeler_on_datasource-v1","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 10)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-147","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = DataSource(\"bar1d_CN_CONBOND\").read(start_date=\"2017-06-01\", end_date=\"2020-06-30\")\n df2 = df.drop(['close'],axis = 1)\n data_1 = DataSource.write_df(df)\n data_2 = DataSource.write_df(df2)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-147"},{"name":"input_2","node_id":"-147"},{"name":"input_3","node_id":"-147"}],"output_ports":[{"name":"data_1","node_id":"-147"},{"name":"data_2","node_id":"-147"},{"name":"data_3","node_id":"-147"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-505","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"market_performance_CN_CONBOND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-06-30","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-505"},{"name":"features","node_id":"-505"}],"output_ports":[{"name":"data","node_id":"-505"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-327","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"market_performance_CN_CONBOND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"2021-06-30","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-30","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-327"},{"name":"features","node_id":"-327"}],"output_ports":[{"name":"data","node_id":"-327"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-758","module_id":"BigQuantSpace.trade_data_generation.trade_data_generation-v1","parameters":[{"name":"category","value":"CN_STOCK","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input","node_id":"-758"}],"output_ports":[{"name":"history_data","node_id":"-758"},{"name":"instrument_list","node_id":"-758"},{"name":"calendar","node_id":"-758"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-1415","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = DataSource(\"bar1d_CN_CONBOND\").read(start_date=\"2020-06-30\", end_date=\"2021-06-30\")\n df = df.drop(['close'],axis = 1)\n data_1 = DataSource.write_df(df)\n data_2 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-1415"},{"name":"input_2","node_id":"-1415"},{"name":"input_3","node_id":"-1415"}],"output_ports":[{"name":"data_1","node_id":"-1415"},{"name":"data_2","node_id":"-1415"},{"name":"data_3","node_id":"-1415"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-1481","module_id":"BigQuantSpace.hftrade.hftrade-v2","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n print(context.options)\n # 加载预测数据\n context.ranker_prediction = context.options.get('data').read()['data']\n print(context.ranker_prediction)\n context.param = context.options['data'].read()[\"param\"]\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = context.param[\"stock_count\"]\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.4\n context.hold_days = context.param[\"hold_days\"]\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 交易引擎:每个单位时间开盘前调用一次。\ndef bigquant_run(context, data):\n # 盘前处理,订阅行情等\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:tick数据处理函数,每个tick执行一次\ndef bigquant_run(context, tick):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n\n try:\n print('处理data',data)\n context.ranker_prediction = context.options.get('data').read()['data']\n # 相隔几天(hold_days)进行一下换仓\n if context.trading_day_index % context.hold_days != 0:\n return \n\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n # 目前持仓\n positions = {e: p.amount * p.last_sale_price for e, p in context.portfolio.positions.items()}\n # 权重\n buy_cash_weights = context.stock_weights\n print(\"buy_cash_weights\",buy_cash_weights)\n # 今日买入股票列表\n stock_to_buy = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n # 持仓上限\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n print(\"<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\")\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = [equity for equity in context.portfolio.positions ]\n # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有\n no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]\n # 需要卖出的股票\n stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]\n\n # 卖出\n for stock in stock_to_sell:\n # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态\n # 如果返回真值,则可以正常下单,否则会出错\n # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式\n if data.can_trade(context.symbol(stock)):\n # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,\n # 即卖出全部股票,可参考回测文档\n if context.order_target_percent(context.symbol(stock), 0) != 0:\n print('sell_context.symbol',context.symbol(stock))\n\n # 如果当天没有买入的股票,就返回\n if len(stock_to_buy) == 0:\n return\n\n # 买入\n for i, instrument in enumerate(stock_to_buy):\n cash = context.portfolio.portfolio_value * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 500:\n if context.order_value(context.symbol(instrument), cash) !=0:\n print('fail_order_value',cash) \n except Exception as e:\n logger.exception(\"限价单下买单失败%s,%s\",context,e)\n ","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, trade):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, order):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"可转债","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"8","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"True","type":"Literal","bound_global_parameter":null},{"name":"replay_bdb","value":"True","type":"Literal","bound_global_parameter":null},{"name":"show_debug_info","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1481"},{"name":"options_data","node_id":"-1481"},{"name":"history_ds","node_id":"-1481"},{"name":"benchmark_ds","node_id":"-1481"}],"output_ports":[{"name":"raw_perf","node_id":"-1481"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-206","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-206"},{"name":"data2","node_id":"-206"}],"output_ports":[{"name":"data","node_id":"-206"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-228","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"def del_input(input_1):\n df = input_1.read_df()\n df = df.drop([\"trigger_cond_item_desc\",'revise_item_desc','trigger_item_desc'],axis=1)\n df = df.dropna(axis=0, how='all', thresh=None, subset=None, inplace=False)\n print(df.columns)\n #df.sort_values(by=['date','double_low'],axis=0,ascending=True,inplace = True)\n df = df.sort_index(axis = 1)\n df = df.reset_index(drop = True)\n df = df.groupby('date').head(10)\n #print(df[['double_low','date']])\n data_1 = DataSource.write_df(df)\n return data_1\n# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n data_1 = del_input(input_1)\n data_2 = del_input(input_2)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-228"},{"name":"input_2","node_id":"-228"},{"name":"input_3","node_id":"-228"}],"output_ports":[{"name":"data_1","node_id":"-228"},{"name":"data_2","node_id":"-228"},{"name":"data_3","node_id":"-228"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-249","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-249"},{"name":"data2","node_id":"-249"}],"output_ports":[{"name":"data","node_id":"-249"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-259","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n #print(df.columns)\n #df = df1[['date','instrument','close','label']]\n #df = df.drop([\"trigger_cond_item_desc\",'revise_item_desc','trigger_item_desc'],axis=1)\n df = df.dropna(axis=0, how='all', thresh=None, subset=None, inplace=False)\n print(df.columns)\n df.sort_values(by=['date','double_low'],axis=0,ascending=True,inplace = True)\n df = df.sort_index(axis = 1)\n df = df.reset_index(drop = True)\n df = df.groupby('date').head(10)\n #print(df[['double_low','date']])\n data_1 = DataSource.write_df(df)\n data_2 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-259"},{"name":"input_2","node_id":"-259"},{"name":"input_3","node_id":"-259"}],"output_ports":[{"name":"data_1","node_id":"-259"},{"name":"data_2","node_id":"-259"},{"name":"data_3","node_id":"-259"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-109","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read()\n param = input_2.read()\n \n data = {\n \"param\": param,\n \"data\": df\n }\n data_1 = DataSource.write_pickle(data)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-109"},{"name":"input_2","node_id":"-109"},{"name":"input_3","node_id":"-109"}],"output_ports":[{"name":"data_1","node_id":"-109"},{"name":"data_2","node_id":"-109"},{"name":"data_3","node_id":"-109"}],"cacheable":true,"seq_num":11,"comment":"合并数据和Trade参数","comment_collapsed":true},{"node_id":"-121","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3, stock_count, hold_days):\n # 示例代码如下。在这里编写您的代码\n param = {\n \"stock_count\": stock_count,\n \"hold_days\": hold_days\n }\n data_1 = DataSource.write_pickle(param)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n \"stock_count\": 3,\n \"hold_days\": 4 \n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-121"},{"name":"input_2","node_id":"-121"},{"name":"input_3","node_id":"-121"}],"output_ports":[{"name":"data_1","node_id":"-121"},{"name":"data_2","node_id":"-121"},{"name":"data_3","node_id":"-121"}],"cacheable":true,"seq_num":14,"comment":"暴露Trade的参数","comment_collapsed":true},{"node_id":"-16105","module_id":"BigQuantSpace.hyper_parameter_search.hyper_parameter_search-v1","parameters":[{"name":"param_grid_builder","value":"def bigquant_run():\n import itertools\n param_grid = {}\n \n period_list = [5,6,120] \n \n # 在这里设置需要调优的参数备选\n feature_list = [\n '''\n double_low = close + bond_prem_ratio\n remain_size\n rank_swing_volatility_5 = nanstd((high-low)/pre_close, {0})*sqrt(200)*100\n '''.format(period) for period in period_list\n ]\n param_grid[\"m14.params\"] = [\n \"\"\"{\"stock_count\": 3, \"hold_days\": 3}\"\"\",\n \"\"\"{\"stock_count\": 4, \"hold_days\": 4}\"\"\",\n ]\n param_grid['m3.features'] = feature_list\n return param_grid","type":"Literal","bound_global_parameter":null},{"name":"scoring","value":"def bigquant_run(result):\n # 评分:收益/最大回撤\n score = result.get('m21').read_raw_perf()['sharpe'].tail(1)[0]\n return {'score': score}\n","type":"Literal","bound_global_parameter":null},{"name":"search_algorithm","value":"网格搜索","type":"Literal","bound_global_parameter":null},{"name":"search_iterations","value":10,"type":"Literal","bound_global_parameter":null},{"name":"random_state","value":"","type":"Literal","bound_global_parameter":null},{"name":"workers","value":1,"type":"Literal","bound_global_parameter":null},{"name":"worker_distributed_run","value":"False","type":"Literal","bound_global_parameter":null},{"name":"worker_silent","value":"False","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-16105"},{"name":"input_1","node_id":"-16105"},{"name":"input_2","node_id":"-16105"},{"name":"input_3","node_id":"-16105"}],"output_ports":[{"name":"result","node_id":"-16105"}],"cacheable":false,"seq_num":9,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='807,-316,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='558,575,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='907,638,200,200'/><node_position Node='-281' Position='369,140,200,200'/><node_position Node='-295' Position='941,147,200,200'/><node_position Node='-129' Position='-5,156,200,200'/><node_position Node='-147' Position='69,-161,200,200'/><node_position Node='-505' Position='491,-312,200,200'/><node_position Node='-327' Position='1175,-290,200,200'/><node_position Node='-758' Position='1373,160,200,200'/><node_position Node='-1415' Position='1442,-220,200,200'/><node_position Node='-1481' Position='1025,791,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='117,385,200,200'/><node_position Node='-206' Position='177,46,200,200'/><node_position Node='-228' Position='451,-173,200,200'/><node_position Node='-249' Position='1121,-57,200,200'/><node_position Node='-259' Position='911,394,200,200'/><node_position Node='-109' Position='1269,643,200,200'/><node_position Node='-121' Position='1577,522,200,200'/><node_position Node='-16105' Position='116,574,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [16]:
    # 本代码由可视化策略环境自动生成 2022年6月2日 03:31
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m2_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df = DataSource("bar1d_CN_CONBOND").read(start_date="2017-06-01", end_date="2020-06-30")
        df2 = df.drop(['close'],axis = 1)
        data_1 = DataSource.write_df(df)
        data_2 = DataSource.write_df(df2)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m2_post_run_bigquant_run(outputs):
        return outputs
    
    def del_input(input_1):
        df = input_1.read_df()
        df = df.drop(["trigger_cond_item_desc",'revise_item_desc','trigger_item_desc'],axis=1)
        df = df.dropna(axis=0, how='all', thresh=None, subset=None, inplace=False)
        print(df.columns)
        #df.sort_values(by=['date','double_low'],axis=0,ascending=True,inplace = True)
        df = df.sort_index(axis = 1)
        df = df.reset_index(drop = True)
        df = df.groupby('date').head(10)
        #print(df[['double_low','date']])
        data_1 = DataSource.write_df(df)
        return data_1
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m23_run_bigquant_run(input_1, input_2, input_3):
        data_1 = del_input(input_1)
        data_2 = del_input(input_2)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m23_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m15_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df = DataSource("bar1d_CN_CONBOND").read(start_date="2020-06-30", end_date="2021-06-30")
        df = df.drop(['close'],axis = 1)
        data_1 = DataSource.write_df(df)
        data_2 = DataSource.write_pickle(df)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m15_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m13_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df = input_1.read_df()
        #print(df.columns)
        #df = df1[['date','instrument','close','label']]
        #df = df.drop(["trigger_cond_item_desc",'revise_item_desc','trigger_item_desc'],axis=1)
        df = df.dropna(axis=0, how='all', thresh=None, subset=None, inplace=False)
        print(df.columns)
        df.sort_values(by=['date','double_low'],axis=0,ascending=True,inplace = True)
        df = df.sort_index(axis = 1)
        df = df.reset_index(drop = True)
        df = df.groupby('date').head(10)
        #print(df[['double_low','date']])
        data_1 = DataSource.write_df(df)
        data_2 = DataSource.write_pickle(df)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m13_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m14_run_bigquant_run(input_1, input_2, input_3, stock_count, hold_days):
        # 示例代码如下。在这里编写您的代码
        param = {
            "stock_count": stock_count,
            "hold_days": hold_days
            }
        data_1 = DataSource.write_pickle(param)
        return Outputs(data_1=data_1, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m14_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m11_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df = input_1.read()
        param = input_2.read()
        
        data = {
            "param": param,
            "data": df
        }
        data_1 = DataSource.write_pickle(data)
        return Outputs(data_1=data_1, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m11_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m21_initialize_bigquant_run(context):
        print(context.options)
        # 加载预测数据
        context.ranker_prediction = context.options.get('data').read()['data']
        print(context.ranker_prediction)
        context.param = context.options['data'].read()["param"]
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = context.param["stock_count"]
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.4
        context.hold_days = context.param["hold_days"]
    
    # 交易引擎:每个单位时间开盘前调用一次。
    def m21_before_trading_start_bigquant_run(context, data):
        # 盘前处理,订阅行情等
        pass
    
    # 交易引擎:tick数据处理函数,每个tick执行一次
    def m21_handle_tick_bigquant_run(context, tick):
        pass
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m21_handle_data_bigquant_run(context, data):
    
        try:
            print('处理data',data)
            context.ranker_prediction = context.options.get('data').read()['data']
            # 相隔几天(hold_days)进行一下换仓
            if context.trading_day_index % context.hold_days != 0:
                return 
    
            # 按日期过滤得到今日的预测数据
            ranker_prediction = context.ranker_prediction[
                context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
            # 目前持仓
            positions = {e: p.amount * p.last_sale_price for e, p in context.portfolio.positions.items()}
            # 权重
            buy_cash_weights = context.stock_weights
            print("buy_cash_weights",buy_cash_weights)
            # 今日买入股票列表
            stock_to_buy = list(ranker_prediction.instrument[:len(buy_cash_weights)])
            # 持仓上限
            max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
            print("<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<")
            # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
            stock_hold_now = [equity for equity in context.portfolio.positions ]
            # 继续持有的股票:调仓时,如果买入的股票已经存在于目前的持仓里,那么应继续持有
            no_need_to_sell = [i for i in stock_hold_now if i in stock_to_buy]
            # 需要卖出的股票
            stock_to_sell = [i for i in stock_hold_now if i not in no_need_to_sell]
    
            # 卖出
            for stock in stock_to_sell:
                # 如果该股票停牌,则没法成交。因此需要用can_trade方法检查下该股票的状态
                # 如果返回真值,则可以正常下单,否则会出错
                # 因为stock是字符串格式,我们用symbol方法将其转化成平台可以接受的形式:Equity格式
                if data.can_trade(context.symbol(stock)):
                    # order_target_percent是平台的一个下单接口,表明下单使得该股票的权重为0,
                    #   即卖出全部股票,可参考回测文档
                    if context.order_target_percent(context.symbol(stock), 0) != 0:
                        print('sell_context.symbol',context.symbol(stock))
    
            # 如果当天没有买入的股票,就返回
            if len(stock_to_buy) == 0:
                return
    
            # 买入
            for i, instrument in enumerate(stock_to_buy):
                cash = context.portfolio.portfolio_value * buy_cash_weights[i]
                if cash > max_cash_per_instrument - positions.get(instrument, 0):
                    # 确保股票持仓量不会超过每次股票最大的占用资金量
                    cash = max_cash_per_instrument - positions.get(instrument, 0)
                if cash > 500:
                    if context.order_value(context.symbol(instrument), cash) !=0:
                        print('fail_order_value',cash)            
        except Exception as e:
               logger.exception("限价单下买单失败%s,%s",context,e)
                            
    # 交易引擎:成交回报处理函数,每个成交发生时执行一次
    def m21_handle_trade_bigquant_run(context, trade):
        pass
    
    # 交易引擎:委托回报处理函数,每个委托变化时执行一次
    def m21_handle_order_bigquant_run(context, order):
        pass
    
    # 交易引擎:盘后处理函数,每日盘后执行一次
    def m21_after_trading_bigquant_run(context, data):
        pass
    
    
    g = T.Graph({
    
        'm3': 'M.input_features.v1',
        'm3.features': """# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    double_low = close + bond_prem_ratio
    remain_size
    rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100""",
    
        'm2': 'M.cached.v3',
        'm2.run': m2_run_bigquant_run,
        'm2.post_run': m2_post_run_bigquant_run,
        'm2.input_ports': '',
        'm2.params': '{}',
        'm2.output_ports': '',
    
        'm10': 'M.auto_labeler_on_datasource.v1',
        'm10.input_data': T.Graph.OutputPort('m2.data_1'),
        'm10.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 10)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        'm10.drop_na_label': True,
        'm10.cast_label_int': True,
        'm10.date_col': 'date',
        'm10.instrument_col': 'instrument',
        'm10.user_functions': {},
    
        'm1': 'M.use_datasource.v1',
        'm1.datasource_id': 'market_performance_CN_CONBOND',
        'm1.start_date': '2020-01-01',
        'm1.end_date': '2020-06-30',
    
        'm5': 'M.use_datasource.v1',
        'm5.datasource_id': 'market_performance_CN_CONBOND',
        'm5.start_date': '2021-06-30',
        'm5.end_date': '2021-12-30',
    
        'm12': 'M.trade_data_generation.v1',
        'm12.input': T.Graph.OutputPort('m5.data'),
        'm12.category': 'CN_STOCK',
        'm12.m_cached': False,
    
        'm23': 'M.cached.v3',
        'm23.input_1': T.Graph.OutputPort('m1.data'),
        'm23.input_2': T.Graph.OutputPort('m5.data'),
        'm23.run': m23_run_bigquant_run,
        'm23.post_run': m23_post_run_bigquant_run,
        'm23.input_ports': '',
        'm23.params': '{}',
        'm23.output_ports': '',
        'm23.m_cached': False,
    
        'm4': 'M.join.v3',
        'm4.data1': T.Graph.OutputPort('m2.data_2'),
        'm4.data2': T.Graph.OutputPort('m23.data_1'),
        'm4.on': 'date,instrument',
        'm4.how': 'inner',
        'm4.sort': False,
    
        'm16': 'M.derived_feature_extractor.v3',
        'm16.input_data': T.Graph.OutputPort('m4.data'),
        'm16.features': T.Graph.OutputPort('m3.data'),
        'm16.date_col': 'date',
        'm16.instrument_col': 'instrument',
        'm16.drop_na': False,
        'm16.remove_extra_columns': False,
    
        'm7': 'M.join.v3',
        'm7.data1': T.Graph.OutputPort('m10.data'),
        'm7.data2': T.Graph.OutputPort('m16.data'),
        'm7.on': 'date,instrument',
        'm7.how': 'inner',
        'm7.sort': False,
    
        'm6': 'M.stock_ranker_train.v6',
        'm6.training_ds': T.Graph.OutputPort('m7.data'),
        'm6.features': T.Graph.OutputPort('m3.data'),
        'm6.learning_algorithm': '排序',
        'm6.number_of_leaves': 3,
        'm6.minimum_docs_per_leaf': 100,
        'm6.number_of_trees': 2,
        'm6.learning_rate': 0.1,
        'm6.max_bins': 1023,
        'm6.feature_fraction': 1,
        'm6.data_row_fraction': 1,
        'm6.plot_charts': True,
        'm6.ndcg_discount_base': 1,
        'm6.m_lazy_run': False,
        'm6.m_cached': False,
    
        'm15': 'M.cached.v3',
        'm15.run': m15_run_bigquant_run,
        'm15.post_run': m15_post_run_bigquant_run,
        'm15.input_ports': '',
        'm15.params': '{}',
        'm15.output_ports': '',
    
        'm25': 'M.join.v3',
        'm25.data1': T.Graph.OutputPort('m23.data_2'),
        'm25.data2': T.Graph.OutputPort('m15.data_1'),
        'm25.on': 'date,instrument',
        'm25.how': 'inner',
        'm25.sort': False,
    
        'm18': 'M.derived_feature_extractor.v3',
        'm18.input_data': T.Graph.OutputPort('m25.data'),
        'm18.features': T.Graph.OutputPort('m3.data'),
        'm18.date_col': 'date',
        'm18.instrument_col': 'instrument',
        'm18.drop_na': False,
        'm18.remove_extra_columns': False,
    
        'm13': 'M.cached.v3',
        'm13.input_1': T.Graph.OutputPort('m18.data'),
        'm13.run': m13_run_bigquant_run,
        'm13.post_run': m13_post_run_bigquant_run,
        'm13.input_ports': '',
        'm13.params': '{}',
        'm13.output_ports': '',
        'm13.m_cached': False,
    
        'm8': 'M.stock_ranker_predict.v5',
        'm8.model': T.Graph.OutputPort('m6.model'),
        'm8.data': T.Graph.OutputPort('m13.data_1'),
        'm8.m_lazy_run': False,
    
        'm14': 'M.cached.v3',
        'm14.run': m14_run_bigquant_run,
        'm14.post_run': m14_post_run_bigquant_run,
        'm14.input_ports': '',
        'm14.params': """{
        "stock_count": 3,
        "hold_days": 4 
    }""",
        'm14.output_ports': '',
    
        'm11': 'M.cached.v3',
        'm11.input_1': T.Graph.OutputPort('m8.predictions'),
        'm11.input_2': T.Graph.OutputPort('m14.data_1'),
        'm11.run': m11_run_bigquant_run,
        'm11.post_run': m11_post_run_bigquant_run,
        'm11.input_ports': '',
        'm11.params': '{}',
        'm11.output_ports': '',
    
        'm21': 'M.hftrade.v2',
        'm21.instruments': T.Graph.OutputPort('m12.instrument_list'),
        'm21.options_data': T.Graph.OutputPort('m11.data_1'),
        'm21.start_date': '',
        'm21.end_date': '',
        'm21.initialize': m21_initialize_bigquant_run,
        'm21.before_trading_start': m21_before_trading_start_bigquant_run,
        'm21.handle_tick': m21_handle_tick_bigquant_run,
        'm21.handle_data': m21_handle_data_bigquant_run,
        'm21.handle_trade': m21_handle_trade_bigquant_run,
        'm21.handle_order': m21_handle_order_bigquant_run,
        'm21.after_trading': m21_after_trading_bigquant_run,
        'm21.capital_base': 1000000,
        'm21.frequency': 'daily',
        'm21.price_type': '真实价格',
        'm21.product_type': '可转债',
        'm21.before_start_days': '8',
        'm21.order_price_field_buy': 'open',
        'm21.order_price_field_sell': 'close',
        'm21.benchmark': '000300.HIX',
        'm21.plot_charts': True,
        'm21.disable_cache': True,
        'm21.replay_bdb': True,
        'm21.show_debug_info': True,
        'm21.backtest_only': False,
    })
    
    # g.run({})
    
    
    def m9_param_grid_builder_bigquant_run():
        import itertools
        param_grid = {}
        
        period_list = [5,6,120] 
        
        # 在这里设置需要调优的参数备选
        feature_list = [
        '''
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, {0})*sqrt(200)*100
        '''.format(period) for period in period_list
        ]
        param_grid["m14.params"] = [
            """{"stock_count": 3, "hold_days": 3}""",
            """{"stock_count": 4, "hold_days": 4}""",
        ]
        param_grid['m3.features'] = feature_list
        return param_grid
    def m9_scoring_bigquant_run(result):
        # 评分:收益/最大回撤
        score = result.get('m21').read_raw_perf()['sharpe'].tail(1)[0]
        return {'score': score}
    
    
    m9 = M.hyper_parameter_search.v1(
        param_grid_builder=m9_param_grid_builder_bigquant_run,
        scoring=m9_scoring_bigquant_run,
        search_algorithm='网格搜索',
        search_iterations=10,
        workers=1,
        worker_distributed_run=False,
        worker_silent=False,
        run_now=True,
        bq_graph=g
    )
    
    Fitting 1 folds for each of 6 candidates, totalling 6 fits
    [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
    [CV 1/1; 1/6] START m14.params={"stock_count": 3, "hold_days": 3}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100
        
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-87e976b2020e4f7d915cb4e2cade0bbb"}/bigcharts-data-end
    2022-06-02 10:50:15.956918 init history datas... 
    2022-06-02 10:50:15.958249 init history datas done. 
    2022-06-02 10:50:15.986029 run_backtest() capital_base:1000000, frequency:1d, product_type:conbond, date:2021-06-30 ~ 2021-12-30 
    2022-06-02 10:50:15.986389 run_backtest() running... 
    2022-06-02 10:50:15.996010 initial contracts len=0 
    2022-06-02 10:50:15.996346 backtest inited. 
    {'data': DataSource(394b054dc70e498e9f7d35081d63b903T)}
            date  instrument     score  position
    0 2021-06-30  123082.ZCB  0.134401         1
    1 2021-06-30  128141.ZCB  0.134401         2
    2 2021-06-30  128143.ZCB  0.134401         3
    3 2021-06-30  128144.ZCB  0.134401         4
    4 2021-06-30  123079.ZCB  0.134401         5
    5 2021-06-30  123113.ZCB  0.134401         6
    6 2021-06-30  127021.ZCB  0.029014         7
    7 2021-06-30  123042.ZCB  0.029014         8
    8 2021-06-30  123043.ZCB  0.029014         9
    9 2021-06-30  110067.HCB -0.017028        10
    2022-06-02 10:50:16.121258 backtest transforming 1d, bars=1... 
    2022-06-02 10:50:16.121672 transform start_trading_day=2021-06-30 00:00:00, simulation period=2021-06-30 ~ 2021-12-30 
    2022-06-02 10:50:16.121714 transform source=None, before_start_days=8 
    2022-06-02 10:50:16.121746 transform replay_func=<cyfunction BacktestEngine.transform.<locals>.replay_bars_dt at 0x7f2e61fb3380> 
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-01 15:00:00)
    处理data BarDatas(current_dt:2021-07-02 15:00:00)
    处理data BarDatas(current_dt:2021-07-05 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-06 15:00:00)
    处理data BarDatas(current_dt:2021-07-07 15:00:00)
    处理data BarDatas(current_dt:2021-07-08 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-09 15:00:00)
    处理data BarDatas(current_dt:2021-07-12 15:00:00)
    处理data BarDatas(current_dt:2021-07-13 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-14 15:00:00)
    处理data BarDatas(current_dt:2021-07-15 15:00:00)
    处理data BarDatas(current_dt:2021-07-16 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-19 15:00:00)
    处理data BarDatas(current_dt:2021-07-20 15:00:00)
    处理data BarDatas(current_dt:2021-07-21 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-22 15:00:00)
    处理data BarDatas(current_dt:2021-07-23 15:00:00)
    处理data BarDatas(current_dt:2021-07-26 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-27 15:00:00)
    处理data BarDatas(current_dt:2021-07-28 15:00:00)
    处理data BarDatas(current_dt:2021-07-29 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-02 15:00:00)
    处理data BarDatas(current_dt:2021-08-03 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-04 15:00:00)
    处理data BarDatas(current_dt:2021-08-05 15:00:00)
    处理data BarDatas(current_dt:2021-08-06 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-09 15:00:00)
    处理data BarDatas(current_dt:2021-08-10 15:00:00)
    处理data BarDatas(current_dt:2021-08-11 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-12 15:00:00)
    处理data BarDatas(current_dt:2021-08-13 15:00:00)
    处理data BarDatas(current_dt:2021-08-16 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-17 15:00:00)
    处理data BarDatas(current_dt:2021-08-18 15:00:00)
    处理data BarDatas(current_dt:2021-08-19 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-20 15:00:00)
    处理data BarDatas(current_dt:2021-08-23 15:00:00)
    处理data BarDatas(current_dt:2021-08-24 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-25 15:00:00)
    处理data BarDatas(current_dt:2021-08-26 15:00:00)
    处理data BarDatas(current_dt:2021-08-27 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-31 15:00:00)
    处理data BarDatas(current_dt:2021-09-01 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-02 15:00:00)
    处理data BarDatas(current_dt:2021-09-03 15:00:00)
    处理data BarDatas(current_dt:2021-09-06 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-07 15:00:00)
    处理data BarDatas(current_dt:2021-09-08 15:00:00)
    处理data BarDatas(current_dt:2021-09-09 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-10 15:00:00)
    处理data BarDatas(current_dt:2021-09-13 15:00:00)
    处理data BarDatas(current_dt:2021-09-14 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-15 15:00:00)
    处理data BarDatas(current_dt:2021-09-16 15:00:00)
    处理data BarDatas(current_dt:2021-09-17 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-22 15:00:00)
    处理data BarDatas(current_dt:2021-09-23 15:00:00)
    处理data BarDatas(current_dt:2021-09-24 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-27 15:00:00)
    处理data BarDatas(current_dt:2021-09-28 15:00:00)
    处理data BarDatas(current_dt:2021-09-29 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-30 15:00:00)
    处理data BarDatas(current_dt:2021-10-08 15:00:00)
    处理data BarDatas(current_dt:2021-10-11 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-12 15:00:00)
    处理data BarDatas(current_dt:2021-10-13 15:00:00)
    处理data BarDatas(current_dt:2021-10-14 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-15 15:00:00)
    处理data BarDatas(current_dt:2021-10-18 15:00:00)
    处理data BarDatas(current_dt:2021-10-19 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-20 15:00:00)
    处理data BarDatas(current_dt:2021-10-21 15:00:00)
    处理data BarDatas(current_dt:2021-10-22 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-25 15:00:00)
    处理data BarDatas(current_dt:2021-10-26 15:00:00)
    处理data BarDatas(current_dt:2021-10-27 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-28 15:00:00)
    处理data BarDatas(current_dt:2021-10-29 15:00:00)
    处理data BarDatas(current_dt:2021-11-01 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-02 15:00:00)
    处理data BarDatas(current_dt:2021-11-03 15:00:00)
    处理data BarDatas(current_dt:2021-11-04 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-05 15:00:00)
    处理data BarDatas(current_dt:2021-11-08 15:00:00)
    处理data BarDatas(current_dt:2021-11-09 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-10 15:00:00)
    处理data BarDatas(current_dt:2021-11-11 15:00:00)
    处理data BarDatas(current_dt:2021-11-12 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-15 15:00:00)
    处理data BarDatas(current_dt:2021-11-16 15:00:00)
    处理data BarDatas(current_dt:2021-11-17 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-18 15:00:00)
    处理data BarDatas(current_dt:2021-11-19 15:00:00)
    处理data BarDatas(current_dt:2021-11-22 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-23 15:00:00)
    处理data BarDatas(current_dt:2021-11-24 15:00:00)
    处理data BarDatas(current_dt:2021-11-25 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-26 15:00:00)
    处理data BarDatas(current_dt:2021-11-29 15:00:00)
    处理data BarDatas(current_dt:2021-11-30 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-01 15:00:00)
    处理data BarDatas(current_dt:2021-12-02 15:00:00)
    处理data BarDatas(current_dt:2021-12-03 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-06 15:00:00)
    处理data BarDatas(current_dt:2021-12-07 15:00:00)
    处理data BarDatas(current_dt:2021-12-08 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-09 15:00:00)
    处理data BarDatas(current_dt:2021-12-10 15:00:00)
    处理data BarDatas(current_dt:2021-12-13 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-14 15:00:00)
    处理data BarDatas(current_dt:2021-12-15 15:00:00)
    处理data BarDatas(current_dt:2021-12-16 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-17 15:00:00)
    处理data BarDatas(current_dt:2021-12-20 15:00:00)
    处理data BarDatas(current_dt:2021-12-21 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-22 15:00:00)
    处理data BarDatas(current_dt:2021-12-23 15:00:00)
    处理data BarDatas(current_dt:2021-12-24 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-27 15:00:00)
    处理data BarDatas(current_dt:2021-12-28 15:00:00)
    处理data BarDatas(current_dt:2021-12-29 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-30 15:00:00)
    2022-06-02 10:50:19.889298 backtest run end! 
    2022-06-02 10:50:20.476320 run_backtest() finished! time cost 4.49s! 
    
    2022-06-02 10:50:22.858629 perf_render raw_perf=DataSource(f8101765288641198fdc2224417323bbT), benchmark_data=DataSource(eaf6509915e84102a631b2405dc9b3ffT), process stats...
    2022-06-02 10:50:23.587147 perf_render process transactions...
    2022-06-02 10:50:23.748712 perf_render process positions...
    2022-06-02 10:50:23.873460 perf_render process logs...
    2022-06-02 10:50:24.270229 perf_render process plot...
    
    • 收益率-0.98%
    • 年化收益率-1.89%
    • 基准收益率-5.79%
    • 阿尔法-0.05
    • 贝塔0.02
    • 夏普比率-2.98
    • 胜率0.0
    • 盈亏比0.0
    • 收益波动率1.65%
    • 信息比率0.03
    • 最大回撤1.33%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-8c458976292c43e0a1c46bdcbed6d357"}/bigcharts-data-end
    [CV 1/1; 1/6] END m14.params={"stock_count": 3, "hold_days": 3}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100
        ; score: (test=-2.984) total time= 1.5min
    [Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:  1.5min remaining:    0.0s
    [CV 1/1; 2/6] START m14.params={"stock_count": 3, "hold_days": 3}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 6)*sqrt(200)*100
        
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-c99bc2bb9b60437bbef564e3a5dcd3d4"}/bigcharts-data-end
    2022-06-02 10:51:56.845937 init history datas... 
    2022-06-02 10:51:56.848510 init history datas done. 
    2022-06-02 10:51:56.861246 run_backtest() capital_base:1000000, frequency:1d, product_type:conbond, date:2021-06-30 ~ 2021-12-30 
    2022-06-02 10:51:56.861759 run_backtest() running... 
    2022-06-02 10:51:56.870902 initial contracts len=0 
    2022-06-02 10:51:56.871134 backtest inited. 
    {'data': DataSource(c49ba232e26047fd96d2eb2d52affe21T)}
            date  instrument     score  position
    0 2021-06-30  123082.ZCB  0.140023         1
    1 2021-06-30  128143.ZCB  0.140023         2
    2 2021-06-30  128144.ZCB  0.140023         3
    3 2021-06-30  123079.ZCB  0.140023         4
    4 2021-06-30  123113.ZCB  0.140023         5
    5 2021-06-30  127021.ZCB  0.033559         6
    6 2021-06-30  123042.ZCB  0.033559         7
    7 2021-06-30  123043.ZCB  0.033559         8
    8 2021-06-30  128141.ZCB -0.011513         9
    9 2021-06-30  110067.HCB -0.011513        10
    2022-06-02 10:51:56.933792 backtest transforming 1d, bars=1... 
    2022-06-02 10:51:56.934176 transform start_trading_day=2021-06-30 00:00:00, simulation period=2021-06-30 ~ 2021-12-30 
    2022-06-02 10:51:56.934225 transform source=None, before_start_days=8 
    2022-06-02 10:51:56.934267 transform replay_func=<cyfunction BacktestEngine.transform.<locals>.replay_bars_dt at 0x7f2e61fb36c0> 
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-01 15:00:00)
    处理data BarDatas(current_dt:2021-07-02 15:00:00)
    处理data BarDatas(current_dt:2021-07-05 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-06 15:00:00)
    处理data BarDatas(current_dt:2021-07-07 15:00:00)
    处理data BarDatas(current_dt:2021-07-08 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-09 15:00:00)
    处理data BarDatas(current_dt:2021-07-12 15:00:00)
    处理data BarDatas(current_dt:2021-07-13 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-14 15:00:00)
    处理data BarDatas(current_dt:2021-07-15 15:00:00)
    处理data BarDatas(current_dt:2021-07-16 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-19 15:00:00)
    处理data BarDatas(current_dt:2021-07-20 15:00:00)
    处理data BarDatas(current_dt:2021-07-21 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-22 15:00:00)
    处理data BarDatas(current_dt:2021-07-23 15:00:00)
    处理data BarDatas(current_dt:2021-07-26 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-27 15:00:00)
    处理data BarDatas(current_dt:2021-07-28 15:00:00)
    处理data BarDatas(current_dt:2021-07-29 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-02 15:00:00)
    处理data BarDatas(current_dt:2021-08-03 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-04 15:00:00)
    处理data BarDatas(current_dt:2021-08-05 15:00:00)
    处理data BarDatas(current_dt:2021-08-06 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-09 15:00:00)
    处理data BarDatas(current_dt:2021-08-10 15:00:00)
    处理data BarDatas(current_dt:2021-08-11 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-12 15:00:00)
    处理data BarDatas(current_dt:2021-08-13 15:00:00)
    处理data BarDatas(current_dt:2021-08-16 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-17 15:00:00)
    处理data BarDatas(current_dt:2021-08-18 15:00:00)
    处理data BarDatas(current_dt:2021-08-19 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-20 15:00:00)
    处理data BarDatas(current_dt:2021-08-23 15:00:00)
    处理data BarDatas(current_dt:2021-08-24 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-25 15:00:00)
    处理data BarDatas(current_dt:2021-08-26 15:00:00)
    处理data BarDatas(current_dt:2021-08-27 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-31 15:00:00)
    处理data BarDatas(current_dt:2021-09-01 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-02 15:00:00)
    处理data BarDatas(current_dt:2021-09-03 15:00:00)
    处理data BarDatas(current_dt:2021-09-06 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-07 15:00:00)
    处理data BarDatas(current_dt:2021-09-08 15:00:00)
    处理data BarDatas(current_dt:2021-09-09 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-10 15:00:00)
    处理data BarDatas(current_dt:2021-09-13 15:00:00)
    处理data BarDatas(current_dt:2021-09-14 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-15 15:00:00)
    处理data BarDatas(current_dt:2021-09-16 15:00:00)
    处理data BarDatas(current_dt:2021-09-17 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-22 15:00:00)
    处理data BarDatas(current_dt:2021-09-23 15:00:00)
    处理data BarDatas(current_dt:2021-09-24 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-27 15:00:00)
    处理data BarDatas(current_dt:2021-09-28 15:00:00)
    处理data BarDatas(current_dt:2021-09-29 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-30 15:00:00)
    处理data BarDatas(current_dt:2021-10-08 15:00:00)
    处理data BarDatas(current_dt:2021-10-11 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-12 15:00:00)
    处理data BarDatas(current_dt:2021-10-13 15:00:00)
    处理data BarDatas(current_dt:2021-10-14 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-15 15:00:00)
    处理data BarDatas(current_dt:2021-10-18 15:00:00)
    处理data BarDatas(current_dt:2021-10-19 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-20 15:00:00)
    处理data BarDatas(current_dt:2021-10-21 15:00:00)
    处理data BarDatas(current_dt:2021-10-22 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-25 15:00:00)
    处理data BarDatas(current_dt:2021-10-26 15:00:00)
    处理data BarDatas(current_dt:2021-10-27 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-28 15:00:00)
    处理data BarDatas(current_dt:2021-10-29 15:00:00)
    处理data BarDatas(current_dt:2021-11-01 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-02 15:00:00)
    处理data BarDatas(current_dt:2021-11-03 15:00:00)
    处理data BarDatas(current_dt:2021-11-04 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-05 15:00:00)
    处理data BarDatas(current_dt:2021-11-08 15:00:00)
    处理data BarDatas(current_dt:2021-11-09 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-10 15:00:00)
    处理data BarDatas(current_dt:2021-11-11 15:00:00)
    处理data BarDatas(current_dt:2021-11-12 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-15 15:00:00)
    处理data BarDatas(current_dt:2021-11-16 15:00:00)
    处理data BarDatas(current_dt:2021-11-17 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-18 15:00:00)
    处理data BarDatas(current_dt:2021-11-19 15:00:00)
    处理data BarDatas(current_dt:2021-11-22 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-23 15:00:00)
    处理data BarDatas(current_dt:2021-11-24 15:00:00)
    处理data BarDatas(current_dt:2021-11-25 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-26 15:00:00)
    处理data BarDatas(current_dt:2021-11-29 15:00:00)
    处理data BarDatas(current_dt:2021-11-30 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-01 15:00:00)
    处理data BarDatas(current_dt:2021-12-02 15:00:00)
    处理data BarDatas(current_dt:2021-12-03 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-06 15:00:00)
    处理data BarDatas(current_dt:2021-12-07 15:00:00)
    处理data BarDatas(current_dt:2021-12-08 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-09 15:00:00)
    处理data BarDatas(current_dt:2021-12-10 15:00:00)
    处理data BarDatas(current_dt:2021-12-13 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-14 15:00:00)
    处理data BarDatas(current_dt:2021-12-15 15:00:00)
    处理data BarDatas(current_dt:2021-12-16 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-17 15:00:00)
    处理data BarDatas(current_dt:2021-12-20 15:00:00)
    处理data BarDatas(current_dt:2021-12-21 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-22 15:00:00)
    处理data BarDatas(current_dt:2021-12-23 15:00:00)
    处理data BarDatas(current_dt:2021-12-24 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-27 15:00:00)
    处理data BarDatas(current_dt:2021-12-28 15:00:00)
    处理data BarDatas(current_dt:2021-12-29 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-30 15:00:00)
    2022-06-02 10:51:59.719526 backtest run end! 
    2022-06-02 10:52:00.266364 run_backtest() finished! time cost 3.405s! 
    
    2022-06-02 10:52:02.090264 perf_render raw_perf=DataSource(a2378003e8af42f88ed5ced64e588437T), benchmark_data=DataSource(3a91829a26644af880bef7122000a27bT), process stats...
    2022-06-02 10:52:02.658655 perf_render process transactions...
    2022-06-02 10:52:02.788066 perf_render process positions...
    2022-06-02 10:52:02.917315 perf_render process logs...
    2022-06-02 10:52:03.269500 perf_render process plot...
    
    • 收益率-1.19%
    • 年化收益率-2.29%
    • 基准收益率-5.79%
    • 阿尔法-0.05
    • 贝塔0.02
    • 夏普比率-2.89
    • 胜率0.0
    • 盈亏比0.0
    • 收益波动率1.85%
    • 信息比率0.03
    • 最大回撤1.29%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9eee3db811b047a9a35df50d06edd511"}/bigcharts-data-end
    [CV 1/1; 2/6] END m14.params={"stock_count": 3, "hold_days": 3}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 6)*sqrt(200)*100
        ; score: (test=-2.891) total time= 1.6min
    [Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:  3.2min remaining:    0.0s
    [CV 1/1; 3/6] START m14.params={"stock_count": 3, "hold_days": 3}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100
        
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-433d3b796c6d477aaca832ca15f5944a"}/bigcharts-data-end
    2022-06-02 10:53:27.589744 init history datas... 
    2022-06-02 10:53:27.590714 init history datas done. 
    2022-06-02 10:53:27.602265 run_backtest() capital_base:1000000, frequency:1d, product_type:conbond, date:2021-06-30 ~ 2021-12-30 
    2022-06-02 10:53:27.602693 run_backtest() running... 
    2022-06-02 10:53:27.610596 initial contracts len=0 
    2022-06-02 10:53:27.611370 backtest inited. 
    {'data': DataSource(a23486e43d84437696df984653403ac6T)}
            date  instrument     score  position
    0 2021-06-30  123082.ZCB  0.164295         1
    1 2021-06-30  128143.ZCB  0.164295         2
    2 2021-06-30  128144.ZCB  0.164295         3
    3 2021-06-30  123079.ZCB  0.164295         4
    4 2021-06-30  123113.ZCB  0.164295         5
    5 2021-06-30  127021.ZCB  0.028803         6
    6 2021-06-30  123042.ZCB  0.028803         7
    7 2021-06-30  123043.ZCB  0.028803         8
    8 2021-06-30  128141.ZCB  0.024234         9
    9 2021-06-30  110067.HCB  0.024234        10
    2022-06-02 10:53:27.662341 backtest transforming 1d, bars=1... 
    2022-06-02 10:53:27.662754 transform start_trading_day=2021-06-30 00:00:00, simulation period=2021-06-30 ~ 2021-12-30 
    2022-06-02 10:53:27.662806 transform source=None, before_start_days=8 
    2022-06-02 10:53:27.662846 transform replay_func=<cyfunction BacktestEngine.transform.<locals>.replay_bars_dt at 0x7f2e61c47520> 
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-01 15:00:00)
    处理data BarDatas(current_dt:2021-07-02 15:00:00)
    处理data BarDatas(current_dt:2021-07-05 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-06 15:00:00)
    处理data BarDatas(current_dt:2021-07-07 15:00:00)
    处理data BarDatas(current_dt:2021-07-08 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-09 15:00:00)
    处理data BarDatas(current_dt:2021-07-12 15:00:00)
    处理data BarDatas(current_dt:2021-07-13 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-14 15:00:00)
    处理data BarDatas(current_dt:2021-07-15 15:00:00)
    处理data BarDatas(current_dt:2021-07-16 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-19 15:00:00)
    处理data BarDatas(current_dt:2021-07-20 15:00:00)
    处理data BarDatas(current_dt:2021-07-21 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-22 15:00:00)
    处理data BarDatas(current_dt:2021-07-23 15:00:00)
    处理data BarDatas(current_dt:2021-07-26 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-27 15:00:00)
    处理data BarDatas(current_dt:2021-07-28 15:00:00)
    处理data BarDatas(current_dt:2021-07-29 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-02 15:00:00)
    处理data BarDatas(current_dt:2021-08-03 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-04 15:00:00)
    处理data BarDatas(current_dt:2021-08-05 15:00:00)
    处理data BarDatas(current_dt:2021-08-06 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-09 15:00:00)
    处理data BarDatas(current_dt:2021-08-10 15:00:00)
    处理data BarDatas(current_dt:2021-08-11 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-12 15:00:00)
    处理data BarDatas(current_dt:2021-08-13 15:00:00)
    处理data BarDatas(current_dt:2021-08-16 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-17 15:00:00)
    处理data BarDatas(current_dt:2021-08-18 15:00:00)
    处理data BarDatas(current_dt:2021-08-19 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-20 15:00:00)
    处理data BarDatas(current_dt:2021-08-23 15:00:00)
    处理data BarDatas(current_dt:2021-08-24 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-25 15:00:00)
    处理data BarDatas(current_dt:2021-08-26 15:00:00)
    处理data BarDatas(current_dt:2021-08-27 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-31 15:00:00)
    处理data BarDatas(current_dt:2021-09-01 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-02 15:00:00)
    处理data BarDatas(current_dt:2021-09-03 15:00:00)
    处理data BarDatas(current_dt:2021-09-06 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-07 15:00:00)
    处理data BarDatas(current_dt:2021-09-08 15:00:00)
    处理data BarDatas(current_dt:2021-09-09 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-10 15:00:00)
    处理data BarDatas(current_dt:2021-09-13 15:00:00)
    处理data BarDatas(current_dt:2021-09-14 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-15 15:00:00)
    处理data BarDatas(current_dt:2021-09-16 15:00:00)
    处理data BarDatas(current_dt:2021-09-17 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-22 15:00:00)
    处理data BarDatas(current_dt:2021-09-23 15:00:00)
    处理data BarDatas(current_dt:2021-09-24 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-27 15:00:00)
    处理data BarDatas(current_dt:2021-09-28 15:00:00)
    处理data BarDatas(current_dt:2021-09-29 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-30 15:00:00)
    处理data BarDatas(current_dt:2021-10-08 15:00:00)
    处理data BarDatas(current_dt:2021-10-11 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-12 15:00:00)
    处理data BarDatas(current_dt:2021-10-13 15:00:00)
    处理data BarDatas(current_dt:2021-10-14 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-15 15:00:00)
    处理data BarDatas(current_dt:2021-10-18 15:00:00)
    处理data BarDatas(current_dt:2021-10-19 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-20 15:00:00)
    处理data BarDatas(current_dt:2021-10-21 15:00:00)
    处理data BarDatas(current_dt:2021-10-22 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-25 15:00:00)
    处理data BarDatas(current_dt:2021-10-26 15:00:00)
    处理data BarDatas(current_dt:2021-10-27 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-28 15:00:00)
    处理data BarDatas(current_dt:2021-10-29 15:00:00)
    处理data BarDatas(current_dt:2021-11-01 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-02 15:00:00)
    处理data BarDatas(current_dt:2021-11-03 15:00:00)
    处理data BarDatas(current_dt:2021-11-04 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-05 15:00:00)
    处理data BarDatas(current_dt:2021-11-08 15:00:00)
    处理data BarDatas(current_dt:2021-11-09 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-10 15:00:00)
    处理data BarDatas(current_dt:2021-11-11 15:00:00)
    处理data BarDatas(current_dt:2021-11-12 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-15 15:00:00)
    处理data BarDatas(current_dt:2021-11-16 15:00:00)
    处理data BarDatas(current_dt:2021-11-17 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-18 15:00:00)
    处理data BarDatas(current_dt:2021-11-19 15:00:00)
    处理data BarDatas(current_dt:2021-11-22 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-23 15:00:00)
    处理data BarDatas(current_dt:2021-11-24 15:00:00)
    处理data BarDatas(current_dt:2021-11-25 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-26 15:00:00)
    处理data BarDatas(current_dt:2021-11-29 15:00:00)
    处理data BarDatas(current_dt:2021-11-30 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-01 15:00:00)
    处理data BarDatas(current_dt:2021-12-02 15:00:00)
    处理data BarDatas(current_dt:2021-12-03 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-06 15:00:00)
    处理data BarDatas(current_dt:2021-12-07 15:00:00)
    处理data BarDatas(current_dt:2021-12-08 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-09 15:00:00)
    处理data BarDatas(current_dt:2021-12-10 15:00:00)
    处理data BarDatas(current_dt:2021-12-13 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-14 15:00:00)
    处理data BarDatas(current_dt:2021-12-15 15:00:00)
    处理data BarDatas(current_dt:2021-12-16 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-17 15:00:00)
    处理data BarDatas(current_dt:2021-12-20 15:00:00)
    处理data BarDatas(current_dt:2021-12-21 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-22 15:00:00)
    处理data BarDatas(current_dt:2021-12-23 15:00:00)
    处理data BarDatas(current_dt:2021-12-24 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-27 15:00:00)
    处理data BarDatas(current_dt:2021-12-28 15:00:00)
    处理data BarDatas(current_dt:2021-12-29 15:00:00)
    buy_cash_weights [0.46927872602275644, 0.29608191096586517, 0.23463936301137822]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-30 15:00:00)
    2022-06-02 10:53:30.233034 backtest run end! 
    2022-06-02 10:53:30.716085 run_backtest() finished! time cost 3.113s! 
    
    2022-06-02 10:53:32.449161 perf_render raw_perf=DataSource(46024ff650b145eabb7b8c7daa42109bT), benchmark_data=DataSource(b8e96a50847f48e282601a3c6df6dc1cT), process stats...
    2022-06-02 10:53:32.765301 perf_render process transactions...
    2022-06-02 10:53:32.859262 perf_render process positions...
    2022-06-02 10:53:32.966609 perf_render process logs...
    2022-06-02 10:53:33.115646 perf_render process plot...
    
    • 收益率-1.19%
    • 年化收益率-2.29%
    • 基准收益率-5.79%
    • 阿尔法-0.05
    • 贝塔0.02
    • 夏普比率-2.89
    • 胜率0.0
    • 盈亏比0.0
    • 收益波动率1.85%
    • 信息比率0.03
    • 最大回撤1.29%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-a5cc496bb9204085ad625f31373b14bb"}/bigcharts-data-end
    [CV 1/1; 3/6] END m14.params={"stock_count": 3, "hold_days": 3}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100
        ; score: (test=-2.891) total time= 1.5min
    [Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:  4.7min remaining:    0.0s
    [CV 1/1; 4/6] START m14.params={"stock_count": 4, "hold_days": 4}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100
        
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-aecbd3fcf9ca433aac88e5f60e8ca162"}/bigcharts-data-end
    2022-06-02 10:55:14.723804 init history datas... 
    2022-06-02 10:55:14.726570 init history datas done. 
    2022-06-02 10:55:14.736112 run_backtest() capital_base:1000000, frequency:1d, product_type:conbond, date:2021-06-30 ~ 2021-12-30 
    2022-06-02 10:55:14.736533 run_backtest() running... 
    2022-06-02 10:55:14.749905 initial contracts len=0 
    2022-06-02 10:55:14.750111 backtest inited. 
    {'data': DataSource(8cf679b5784446f3a48302df53b79785T)}
            date  instrument     score  position
    0 2021-06-30  123082.ZCB  0.134401         1
    1 2021-06-30  128141.ZCB  0.134401         2
    2 2021-06-30  128143.ZCB  0.134401         3
    3 2021-06-30  128144.ZCB  0.134401         4
    4 2021-06-30  123079.ZCB  0.134401         5
    5 2021-06-30  123113.ZCB  0.134401         6
    6 2021-06-30  127021.ZCB  0.029014         7
    7 2021-06-30  123042.ZCB  0.029014         8
    8 2021-06-30  123043.ZCB  0.029014         9
    9 2021-06-30  110067.HCB -0.017028        10
    2022-06-02 10:55:14.932954 backtest transforming 1d, bars=1... 
    2022-06-02 10:55:14.933368 transform start_trading_day=2021-06-30 00:00:00, simulation period=2021-06-30 ~ 2021-12-30 
    2022-06-02 10:55:14.933425 transform source=None, before_start_days=8 
    2022-06-02 10:55:14.933459 transform replay_func=<cyfunction BacktestEngine.transform.<locals>.replay_bars_dt at 0x7f2e61908110> 
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-01 15:00:00)
    处理data BarDatas(current_dt:2021-07-02 15:00:00)
    处理data BarDatas(current_dt:2021-07-05 15:00:00)
    处理data BarDatas(current_dt:2021-07-06 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-07 15:00:00)
    处理data BarDatas(current_dt:2021-07-08 15:00:00)
    处理data BarDatas(current_dt:2021-07-09 15:00:00)
    处理data BarDatas(current_dt:2021-07-12 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-13 15:00:00)
    处理data BarDatas(current_dt:2021-07-14 15:00:00)
    处理data BarDatas(current_dt:2021-07-15 15:00:00)
    处理data BarDatas(current_dt:2021-07-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-19 15:00:00)
    处理data BarDatas(current_dt:2021-07-20 15:00:00)
    处理data BarDatas(current_dt:2021-07-21 15:00:00)
    处理data BarDatas(current_dt:2021-07-22 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-23 15:00:00)
    处理data BarDatas(current_dt:2021-07-26 15:00:00)
    处理data BarDatas(current_dt:2021-07-27 15:00:00)
    处理data BarDatas(current_dt:2021-07-28 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-29 15:00:00)
    处理data BarDatas(current_dt:2021-07-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-02 15:00:00)
    处理data BarDatas(current_dt:2021-08-03 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-04 15:00:00)
    处理data BarDatas(current_dt:2021-08-05 15:00:00)
    处理data BarDatas(current_dt:2021-08-06 15:00:00)
    处理data BarDatas(current_dt:2021-08-09 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-10 15:00:00)
    处理data BarDatas(current_dt:2021-08-11 15:00:00)
    处理data BarDatas(current_dt:2021-08-12 15:00:00)
    处理data BarDatas(current_dt:2021-08-13 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-16 15:00:00)
    处理data BarDatas(current_dt:2021-08-17 15:00:00)
    处理data BarDatas(current_dt:2021-08-18 15:00:00)
    处理data BarDatas(current_dt:2021-08-19 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-20 15:00:00)
    处理data BarDatas(current_dt:2021-08-23 15:00:00)
    处理data BarDatas(current_dt:2021-08-24 15:00:00)
    处理data BarDatas(current_dt:2021-08-25 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-26 15:00:00)
    处理data BarDatas(current_dt:2021-08-27 15:00:00)
    处理data BarDatas(current_dt:2021-08-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-31 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-01 15:00:00)
    处理data BarDatas(current_dt:2021-09-02 15:00:00)
    处理data BarDatas(current_dt:2021-09-03 15:00:00)
    处理data BarDatas(current_dt:2021-09-06 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-07 15:00:00)
    处理data BarDatas(current_dt:2021-09-08 15:00:00)
    处理data BarDatas(current_dt:2021-09-09 15:00:00)
    处理data BarDatas(current_dt:2021-09-10 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-13 15:00:00)
    处理data BarDatas(current_dt:2021-09-14 15:00:00)
    处理data BarDatas(current_dt:2021-09-15 15:00:00)
    处理data BarDatas(current_dt:2021-09-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-17 15:00:00)
    处理data BarDatas(current_dt:2021-09-22 15:00:00)
    处理data BarDatas(current_dt:2021-09-23 15:00:00)
    处理data BarDatas(current_dt:2021-09-24 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-27 15:00:00)
    处理data BarDatas(current_dt:2021-09-28 15:00:00)
    处理data BarDatas(current_dt:2021-09-29 15:00:00)
    处理data BarDatas(current_dt:2021-09-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-08 15:00:00)
    处理data BarDatas(current_dt:2021-10-11 15:00:00)
    处理data BarDatas(current_dt:2021-10-12 15:00:00)
    处理data BarDatas(current_dt:2021-10-13 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-14 15:00:00)
    处理data BarDatas(current_dt:2021-10-15 15:00:00)
    处理data BarDatas(current_dt:2021-10-18 15:00:00)
    处理data BarDatas(current_dt:2021-10-19 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-20 15:00:00)
    处理data BarDatas(current_dt:2021-10-21 15:00:00)
    处理data BarDatas(current_dt:2021-10-22 15:00:00)
    处理data BarDatas(current_dt:2021-10-25 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-26 15:00:00)
    处理data BarDatas(current_dt:2021-10-27 15:00:00)
    处理data BarDatas(current_dt:2021-10-28 15:00:00)
    处理data BarDatas(current_dt:2021-10-29 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-01 15:00:00)
    处理data BarDatas(current_dt:2021-11-02 15:00:00)
    处理data BarDatas(current_dt:2021-11-03 15:00:00)
    处理data BarDatas(current_dt:2021-11-04 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-05 15:00:00)
    处理data BarDatas(current_dt:2021-11-08 15:00:00)
    处理data BarDatas(current_dt:2021-11-09 15:00:00)
    处理data BarDatas(current_dt:2021-11-10 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-11 15:00:00)
    处理data BarDatas(current_dt:2021-11-12 15:00:00)
    处理data BarDatas(current_dt:2021-11-15 15:00:00)
    处理data BarDatas(current_dt:2021-11-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-17 15:00:00)
    处理data BarDatas(current_dt:2021-11-18 15:00:00)
    处理data BarDatas(current_dt:2021-11-19 15:00:00)
    处理data BarDatas(current_dt:2021-11-22 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-23 15:00:00)
    处理data BarDatas(current_dt:2021-11-24 15:00:00)
    处理data BarDatas(current_dt:2021-11-25 15:00:00)
    处理data BarDatas(current_dt:2021-11-26 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-29 15:00:00)
    处理data BarDatas(current_dt:2021-11-30 15:00:00)
    处理data BarDatas(current_dt:2021-12-01 15:00:00)
    处理data BarDatas(current_dt:2021-12-02 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-03 15:00:00)
    处理data BarDatas(current_dt:2021-12-06 15:00:00)
    处理data BarDatas(current_dt:2021-12-07 15:00:00)
    处理data BarDatas(current_dt:2021-12-08 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-09 15:00:00)
    处理data BarDatas(current_dt:2021-12-10 15:00:00)
    处理data BarDatas(current_dt:2021-12-13 15:00:00)
    处理data BarDatas(current_dt:2021-12-14 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-15 15:00:00)
    处理data BarDatas(current_dt:2021-12-16 15:00:00)
    处理data BarDatas(current_dt:2021-12-17 15:00:00)
    处理data BarDatas(current_dt:2021-12-20 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-21 15:00:00)
    处理data BarDatas(current_dt:2021-12-22 15:00:00)
    处理data BarDatas(current_dt:2021-12-23 15:00:00)
    处理data BarDatas(current_dt:2021-12-24 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-27 15:00:00)
    处理data BarDatas(current_dt:2021-12-28 15:00:00)
    处理data BarDatas(current_dt:2021-12-29 15:00:00)
    处理data BarDatas(current_dt:2021-12-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    2022-06-02 10:55:19.653440 backtest run end! 
    2022-06-02 10:55:20.159554 run_backtest() finished! time cost 5.423s! 
    
    2022-06-02 10:55:21.995855 perf_render raw_perf=DataSource(be1c12a6e97348aeb01d47e9edc6784aT), benchmark_data=DataSource(013de5bc66394b1190adbcf24ccf4e7fT), process stats...
    2022-06-02 10:55:22.740652 perf_render process transactions...
    2022-06-02 10:55:22.934826 perf_render process positions...
    2022-06-02 10:55:23.240658 perf_render process logs...
    2022-06-02 10:55:23.581423 perf_render process plot...
    
    • 收益率-0.68%
    • 年化收益率-1.32%
    • 基准收益率-5.79%
    • 阿尔法-0.04
    • 贝塔0.02
    • 夏普比率-2.6
    • 胜率0.25
    • 盈亏比0.33
    • 收益波动率1.66%
    • 信息比率0.03
    • 最大回撤1.37%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-2ba510b41e224de29c16af7348a8dfed"}/bigcharts-data-end
    [CV 1/1; 4/6] END m14.params={"stock_count": 4, "hold_days": 4}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 5)*sqrt(200)*100
        ; score: (test=-2.597) total time= 1.8min
    [Parallel(n_jobs=1)]: Done   4 out of   4 | elapsed:  6.5min remaining:    0.0s
    [CV 1/1; 5/6] START m14.params={"stock_count": 4, "hold_days": 4}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 6)*sqrt(200)*100
        
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-7b6bc837b0ca4d5ea4542522087a3a08"}/bigcharts-data-end
    2022-06-02 10:57:18.282358 init history datas... 
    2022-06-02 10:57:18.283604 init history datas done. 
    2022-06-02 10:57:18.294270 run_backtest() capital_base:1000000, frequency:1d, product_type:conbond, date:2021-06-30 ~ 2021-12-30 
    2022-06-02 10:57:18.294751 run_backtest() running... 
    2022-06-02 10:57:18.302567 initial contracts len=0 
    2022-06-02 10:57:18.303305 backtest inited. 
    {'data': DataSource(8eac4e29df8d4ee58330e2de27a4fc6cT)}
            date  instrument     score  position
    0 2021-06-30  123082.ZCB  0.140023         1
    1 2021-06-30  128143.ZCB  0.140023         2
    2 2021-06-30  128144.ZCB  0.140023         3
    3 2021-06-30  123079.ZCB  0.140023         4
    4 2021-06-30  123113.ZCB  0.140023         5
    5 2021-06-30  127021.ZCB  0.033559         6
    6 2021-06-30  123042.ZCB  0.033559         7
    7 2021-06-30  123043.ZCB  0.033559         8
    8 2021-06-30  128141.ZCB -0.011513         9
    9 2021-06-30  110067.HCB -0.011513        10
    2022-06-02 10:57:18.349460 backtest transforming 1d, bars=1... 
    2022-06-02 10:57:18.349831 transform start_trading_day=2021-06-30 00:00:00, simulation period=2021-06-30 ~ 2021-12-30 
    2022-06-02 10:57:18.349876 transform source=None, before_start_days=8 
    2022-06-02 10:57:18.349911 transform replay_func=<cyfunction BacktestEngine.transform.<locals>.replay_bars_dt at 0x7f2e6189e5f0> 
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-01 15:00:00)
    处理data BarDatas(current_dt:2021-07-02 15:00:00)
    处理data BarDatas(current_dt:2021-07-05 15:00:00)
    处理data BarDatas(current_dt:2021-07-06 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-07 15:00:00)
    处理data BarDatas(current_dt:2021-07-08 15:00:00)
    处理data BarDatas(current_dt:2021-07-09 15:00:00)
    处理data BarDatas(current_dt:2021-07-12 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-13 15:00:00)
    处理data BarDatas(current_dt:2021-07-14 15:00:00)
    处理data BarDatas(current_dt:2021-07-15 15:00:00)
    处理data BarDatas(current_dt:2021-07-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-19 15:00:00)
    处理data BarDatas(current_dt:2021-07-20 15:00:00)
    处理data BarDatas(current_dt:2021-07-21 15:00:00)
    处理data BarDatas(current_dt:2021-07-22 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-23 15:00:00)
    处理data BarDatas(current_dt:2021-07-26 15:00:00)
    处理data BarDatas(current_dt:2021-07-27 15:00:00)
    处理data BarDatas(current_dt:2021-07-28 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-29 15:00:00)
    处理data BarDatas(current_dt:2021-07-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-02 15:00:00)
    处理data BarDatas(current_dt:2021-08-03 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-04 15:00:00)
    处理data BarDatas(current_dt:2021-08-05 15:00:00)
    处理data BarDatas(current_dt:2021-08-06 15:00:00)
    处理data BarDatas(current_dt:2021-08-09 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-10 15:00:00)
    处理data BarDatas(current_dt:2021-08-11 15:00:00)
    处理data BarDatas(current_dt:2021-08-12 15:00:00)
    处理data BarDatas(current_dt:2021-08-13 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-16 15:00:00)
    处理data BarDatas(current_dt:2021-08-17 15:00:00)
    处理data BarDatas(current_dt:2021-08-18 15:00:00)
    处理data BarDatas(current_dt:2021-08-19 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-20 15:00:00)
    处理data BarDatas(current_dt:2021-08-23 15:00:00)
    处理data BarDatas(current_dt:2021-08-24 15:00:00)
    处理data BarDatas(current_dt:2021-08-25 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-26 15:00:00)
    处理data BarDatas(current_dt:2021-08-27 15:00:00)
    处理data BarDatas(current_dt:2021-08-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-31 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-01 15:00:00)
    处理data BarDatas(current_dt:2021-09-02 15:00:00)
    处理data BarDatas(current_dt:2021-09-03 15:00:00)
    处理data BarDatas(current_dt:2021-09-06 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-07 15:00:00)
    处理data BarDatas(current_dt:2021-09-08 15:00:00)
    处理data BarDatas(current_dt:2021-09-09 15:00:00)
    处理data BarDatas(current_dt:2021-09-10 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-13 15:00:00)
    处理data BarDatas(current_dt:2021-09-14 15:00:00)
    处理data BarDatas(current_dt:2021-09-15 15:00:00)
    处理data BarDatas(current_dt:2021-09-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-17 15:00:00)
    处理data BarDatas(current_dt:2021-09-22 15:00:00)
    处理data BarDatas(current_dt:2021-09-23 15:00:00)
    处理data BarDatas(current_dt:2021-09-24 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-27 15:00:00)
    处理data BarDatas(current_dt:2021-09-28 15:00:00)
    处理data BarDatas(current_dt:2021-09-29 15:00:00)
    处理data BarDatas(current_dt:2021-09-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-08 15:00:00)
    处理data BarDatas(current_dt:2021-10-11 15:00:00)
    处理data BarDatas(current_dt:2021-10-12 15:00:00)
    处理data BarDatas(current_dt:2021-10-13 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-14 15:00:00)
    处理data BarDatas(current_dt:2021-10-15 15:00:00)
    处理data BarDatas(current_dt:2021-10-18 15:00:00)
    处理data BarDatas(current_dt:2021-10-19 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-20 15:00:00)
    处理data BarDatas(current_dt:2021-10-21 15:00:00)
    处理data BarDatas(current_dt:2021-10-22 15:00:00)
    处理data BarDatas(current_dt:2021-10-25 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-26 15:00:00)
    处理data BarDatas(current_dt:2021-10-27 15:00:00)
    处理data BarDatas(current_dt:2021-10-28 15:00:00)
    处理data BarDatas(current_dt:2021-10-29 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-01 15:00:00)
    处理data BarDatas(current_dt:2021-11-02 15:00:00)
    处理data BarDatas(current_dt:2021-11-03 15:00:00)
    处理data BarDatas(current_dt:2021-11-04 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-05 15:00:00)
    处理data BarDatas(current_dt:2021-11-08 15:00:00)
    处理data BarDatas(current_dt:2021-11-09 15:00:00)
    处理data BarDatas(current_dt:2021-11-10 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-11 15:00:00)
    处理data BarDatas(current_dt:2021-11-12 15:00:00)
    处理data BarDatas(current_dt:2021-11-15 15:00:00)
    处理data BarDatas(current_dt:2021-11-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-17 15:00:00)
    处理data BarDatas(current_dt:2021-11-18 15:00:00)
    处理data BarDatas(current_dt:2021-11-19 15:00:00)
    处理data BarDatas(current_dt:2021-11-22 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-23 15:00:00)
    处理data BarDatas(current_dt:2021-11-24 15:00:00)
    处理data BarDatas(current_dt:2021-11-25 15:00:00)
    处理data BarDatas(current_dt:2021-11-26 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-29 15:00:00)
    处理data BarDatas(current_dt:2021-11-30 15:00:00)
    处理data BarDatas(current_dt:2021-12-01 15:00:00)
    处理data BarDatas(current_dt:2021-12-02 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-03 15:00:00)
    处理data BarDatas(current_dt:2021-12-06 15:00:00)
    处理data BarDatas(current_dt:2021-12-07 15:00:00)
    处理data BarDatas(current_dt:2021-12-08 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-09 15:00:00)
    处理data BarDatas(current_dt:2021-12-10 15:00:00)
    处理data BarDatas(current_dt:2021-12-13 15:00:00)
    处理data BarDatas(current_dt:2021-12-14 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-15 15:00:00)
    处理data BarDatas(current_dt:2021-12-16 15:00:00)
    处理data BarDatas(current_dt:2021-12-17 15:00:00)
    处理data BarDatas(current_dt:2021-12-20 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-21 15:00:00)
    处理data BarDatas(current_dt:2021-12-22 15:00:00)
    处理data BarDatas(current_dt:2021-12-23 15:00:00)
    处理data BarDatas(current_dt:2021-12-24 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-27 15:00:00)
    处理data BarDatas(current_dt:2021-12-28 15:00:00)
    处理data BarDatas(current_dt:2021-12-29 15:00:00)
    处理data BarDatas(current_dt:2021-12-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    2022-06-02 10:57:21.589254 backtest run end! 
    2022-06-02 10:57:22.095580 run_backtest() finished! time cost 3.801s! 
    
    2022-06-02 10:57:23.774105 perf_render raw_perf=DataSource(d837ac17f86342e98efb2334ad921401T), benchmark_data=DataSource(6bda487a3cc342e487b427f0a9bdcda5T), process stats...
    2022-06-02 10:57:24.086418 perf_render process transactions...
    2022-06-02 10:57:24.247016 perf_render process positions...
    2022-06-02 10:57:24.467276 perf_render process logs...
    2022-06-02 10:57:24.676912 perf_render process plot...
    
    • 收益率-0.73%
    • 年化收益率-1.41%
    • 基准收益率-5.79%
    • 阿尔法-0.04
    • 贝塔0.02
    • 夏普比率-2.7
    • 胜率0.25
    • 盈亏比0.3
    • 收益波动率1.64%
    • 信息比率0.03
    • 最大回撤1.16%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-89c6a3718a02404384d4bb9214511fd1"}/bigcharts-data-end
    [CV 1/1; 5/6] END m14.params={"stock_count": 4, "hold_days": 4}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 6)*sqrt(200)*100
        ; score: (test=-2.697) total time= 2.0min
    [Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:  8.5min remaining:    0.0s
    [CV 1/1; 6/6] START m14.params={"stock_count": 4, "hold_days": 4}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100
        
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-22369657a0be40638f9cd50f1ff1118d"}/bigcharts-data-end
    2022-06-02 10:59:03.521905 init history datas... 
    2022-06-02 10:59:03.523135 init history datas done. 
    2022-06-02 10:59:03.536374 run_backtest() capital_base:1000000, frequency:1d, product_type:conbond, date:2021-06-30 ~ 2021-12-30 
    2022-06-02 10:59:03.536767 run_backtest() running... 
    2022-06-02 10:59:03.546646 initial contracts len=0 
    2022-06-02 10:59:03.547237 backtest inited. 
    {'data': DataSource(17b9485219f34a6db51916e59406da7dT)}
            date  instrument     score  position
    0 2021-06-30  123082.ZCB  0.164295         1
    1 2021-06-30  128143.ZCB  0.164295         2
    2 2021-06-30  128144.ZCB  0.164295         3
    3 2021-06-30  123079.ZCB  0.164295         4
    4 2021-06-30  123113.ZCB  0.164295         5
    5 2021-06-30  127021.ZCB  0.028803         6
    6 2021-06-30  123042.ZCB  0.028803         7
    7 2021-06-30  123043.ZCB  0.028803         8
    8 2021-06-30  128141.ZCB  0.024234         9
    9 2021-06-30  110067.HCB  0.024234        10
    2022-06-02 10:59:03.588470 backtest transforming 1d, bars=1... 
    2022-06-02 10:59:03.588898 transform start_trading_day=2021-06-30 00:00:00, simulation period=2021-06-30 ~ 2021-12-30 
    2022-06-02 10:59:03.589320 transform source=None, before_start_days=8 
    2022-06-02 10:59:03.589380 transform replay_func=<cyfunction BacktestEngine.transform.<locals>.replay_bars_dt at 0x7f2e6189e520> 
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-01 15:00:00)
    处理data BarDatas(current_dt:2021-07-02 15:00:00)
    处理data BarDatas(current_dt:2021-07-05 15:00:00)
    处理data BarDatas(current_dt:2021-07-06 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-07 15:00:00)
    处理data BarDatas(current_dt:2021-07-08 15:00:00)
    处理data BarDatas(current_dt:2021-07-09 15:00:00)
    处理data BarDatas(current_dt:2021-07-12 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-13 15:00:00)
    处理data BarDatas(current_dt:2021-07-14 15:00:00)
    处理data BarDatas(current_dt:2021-07-15 15:00:00)
    处理data BarDatas(current_dt:2021-07-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-19 15:00:00)
    处理data BarDatas(current_dt:2021-07-20 15:00:00)
    处理data BarDatas(current_dt:2021-07-21 15:00:00)
    处理data BarDatas(current_dt:2021-07-22 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-23 15:00:00)
    处理data BarDatas(current_dt:2021-07-26 15:00:00)
    处理data BarDatas(current_dt:2021-07-27 15:00:00)
    处理data BarDatas(current_dt:2021-07-28 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-29 15:00:00)
    处理data BarDatas(current_dt:2021-07-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-02 15:00:00)
    处理data BarDatas(current_dt:2021-08-03 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-04 15:00:00)
    处理data BarDatas(current_dt:2021-08-05 15:00:00)
    处理data BarDatas(current_dt:2021-08-06 15:00:00)
    处理data BarDatas(current_dt:2021-08-09 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-10 15:00:00)
    处理data BarDatas(current_dt:2021-08-11 15:00:00)
    处理data BarDatas(current_dt:2021-08-12 15:00:00)
    处理data BarDatas(current_dt:2021-08-13 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-16 15:00:00)
    处理data BarDatas(current_dt:2021-08-17 15:00:00)
    处理data BarDatas(current_dt:2021-08-18 15:00:00)
    处理data BarDatas(current_dt:2021-08-19 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-20 15:00:00)
    处理data BarDatas(current_dt:2021-08-23 15:00:00)
    处理data BarDatas(current_dt:2021-08-24 15:00:00)
    处理data BarDatas(current_dt:2021-08-25 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-26 15:00:00)
    处理data BarDatas(current_dt:2021-08-27 15:00:00)
    处理data BarDatas(current_dt:2021-08-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-31 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-01 15:00:00)
    处理data BarDatas(current_dt:2021-09-02 15:00:00)
    处理data BarDatas(current_dt:2021-09-03 15:00:00)
    处理data BarDatas(current_dt:2021-09-06 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-07 15:00:00)
    处理data BarDatas(current_dt:2021-09-08 15:00:00)
    处理data BarDatas(current_dt:2021-09-09 15:00:00)
    处理data BarDatas(current_dt:2021-09-10 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-13 15:00:00)
    处理data BarDatas(current_dt:2021-09-14 15:00:00)
    处理data BarDatas(current_dt:2021-09-15 15:00:00)
    处理data BarDatas(current_dt:2021-09-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-17 15:00:00)
    处理data BarDatas(current_dt:2021-09-22 15:00:00)
    处理data BarDatas(current_dt:2021-09-23 15:00:00)
    处理data BarDatas(current_dt:2021-09-24 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-27 15:00:00)
    处理data BarDatas(current_dt:2021-09-28 15:00:00)
    处理data BarDatas(current_dt:2021-09-29 15:00:00)
    处理data BarDatas(current_dt:2021-09-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-08 15:00:00)
    处理data BarDatas(current_dt:2021-10-11 15:00:00)
    处理data BarDatas(current_dt:2021-10-12 15:00:00)
    处理data BarDatas(current_dt:2021-10-13 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-14 15:00:00)
    处理data BarDatas(current_dt:2021-10-15 15:00:00)
    处理data BarDatas(current_dt:2021-10-18 15:00:00)
    处理data BarDatas(current_dt:2021-10-19 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-20 15:00:00)
    处理data BarDatas(current_dt:2021-10-21 15:00:00)
    处理data BarDatas(current_dt:2021-10-22 15:00:00)
    处理data BarDatas(current_dt:2021-10-25 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-26 15:00:00)
    处理data BarDatas(current_dt:2021-10-27 15:00:00)
    处理data BarDatas(current_dt:2021-10-28 15:00:00)
    处理data BarDatas(current_dt:2021-10-29 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-01 15:00:00)
    处理data BarDatas(current_dt:2021-11-02 15:00:00)
    处理data BarDatas(current_dt:2021-11-03 15:00:00)
    处理data BarDatas(current_dt:2021-11-04 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-05 15:00:00)
    处理data BarDatas(current_dt:2021-11-08 15:00:00)
    处理data BarDatas(current_dt:2021-11-09 15:00:00)
    处理data BarDatas(current_dt:2021-11-10 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-11 15:00:00)
    处理data BarDatas(current_dt:2021-11-12 15:00:00)
    处理data BarDatas(current_dt:2021-11-15 15:00:00)
    处理data BarDatas(current_dt:2021-11-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-17 15:00:00)
    处理data BarDatas(current_dt:2021-11-18 15:00:00)
    处理data BarDatas(current_dt:2021-11-19 15:00:00)
    处理data BarDatas(current_dt:2021-11-22 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-23 15:00:00)
    处理data BarDatas(current_dt:2021-11-24 15:00:00)
    处理data BarDatas(current_dt:2021-11-25 15:00:00)
    处理data BarDatas(current_dt:2021-11-26 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-29 15:00:00)
    处理data BarDatas(current_dt:2021-11-30 15:00:00)
    处理data BarDatas(current_dt:2021-12-01 15:00:00)
    处理data BarDatas(current_dt:2021-12-02 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-03 15:00:00)
    处理data BarDatas(current_dt:2021-12-06 15:00:00)
    处理data BarDatas(current_dt:2021-12-07 15:00:00)
    处理data BarDatas(current_dt:2021-12-08 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-09 15:00:00)
    处理data BarDatas(current_dt:2021-12-10 15:00:00)
    处理data BarDatas(current_dt:2021-12-13 15:00:00)
    处理data BarDatas(current_dt:2021-12-14 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-15 15:00:00)
    处理data BarDatas(current_dt:2021-12-16 15:00:00)
    处理data BarDatas(current_dt:2021-12-17 15:00:00)
    处理data BarDatas(current_dt:2021-12-20 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-21 15:00:00)
    处理data BarDatas(current_dt:2021-12-22 15:00:00)
    处理data BarDatas(current_dt:2021-12-23 15:00:00)
    处理data BarDatas(current_dt:2021-12-24 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-27 15:00:00)
    处理data BarDatas(current_dt:2021-12-28 15:00:00)
    处理data BarDatas(current_dt:2021-12-29 15:00:00)
    处理data BarDatas(current_dt:2021-12-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    2022-06-02 10:59:06.226564 backtest run end! 
    2022-06-02 10:59:06.759032 run_backtest() finished! time cost 3.222s! 
    
    2022-06-02 10:59:08.512435 perf_render raw_perf=DataSource(aabcb8e6959b43e4b7a72f5393213d52T), benchmark_data=DataSource(6950b98dc41e4c40b71859159c7b37dfT), process stats...
    2022-06-02 10:59:08.877781 perf_render process transactions...
    2022-06-02 10:59:08.961433 perf_render process positions...
    2022-06-02 10:59:09.062918 perf_render process logs...
    2022-06-02 10:59:09.224773 perf_render process plot...
    
    • 收益率-0.73%
    • 年化收益率-1.41%
    • 基准收益率-5.79%
    • 阿尔法-0.04
    • 贝塔0.02
    • 夏普比率-2.7
    • 胜率0.25
    • 盈亏比0.3
    • 收益波动率1.64%
    • 信息比率0.03
    • 最大回撤1.16%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-26778672a080461484db2a2ef7b11515"}/bigcharts-data-end
    [CV 1/1; 6/6] END m14.params={"stock_count": 4, "hold_days": 4}, m3.features=
        double_low = close + bond_prem_ratio
        remain_size
        rank_swing_volatility_5 = nanstd((high-low)/pre_close, 120)*sqrt(200)*100
        ; score: (test=-2.697) total time= 1.7min
    [Parallel(n_jobs=1)]: Done   6 out of   6 | elapsed: 10.3min remaining:    0.0s
    [Parallel(n_jobs=1)]: Done   6 out of   6 | elapsed: 10.3min finished
    
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    Index(['remain_size', 'instrument', 'equ_trading_code', 'conversion_chg_pct',
           'date', 'conversion_price', 'name', 'trading_code',
           'conversion_chg_pct_week', 'bond_prem_ratio', 'equ_name',
           'redemption_price', 'close_equ', 'total_size', 'pure_bond_prem_ratio',
           'pure_bond_ratio', 'close'],
          dtype='object')
    
    Index(['instrument', 'date', 'pre_close', 'name_x', 'open', 'high', 'low',
           'deal_number', 'volume', 'amount', 'accrued_interest',
           'yield_to_maturity', 'vwap', 'gross_close', 'net_close',
           'bond_prem_ratio', 'close', 'close_equ', 'conversion_chg_pct',
           'conversion_chg_pct_week', 'conversion_price', 'equ_name',
           'equ_trading_code', 'name_y', 'pure_bond_prem_ratio', 'pure_bond_ratio',
           'redemption_price', 'remain_size', 'total_size', 'trading_code',
           'double_low', 'rank_swing_volatility_5'],
          dtype='object')
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-be99ec584b6244388febd8341945cc18"}/bigcharts-data-end
    2022-06-02 11:00:31.020203 init history datas... 
    2022-06-02 11:00:31.021272 init history datas done. 
    2022-06-02 11:00:31.034419 run_backtest() capital_base:1000000, frequency:1d, product_type:conbond, date:2021-06-30 ~ 2021-12-30 
    2022-06-02 11:00:31.034908 run_backtest() running... 
    2022-06-02 11:00:31.043086 initial contracts len=0 
    2022-06-02 11:00:31.043251 backtest inited. 
    {'data': DataSource(f1a0772d55a6474c9443e0376065866cT)}
            date  instrument     score  position
    0 2021-06-30  123082.ZCB  0.134401         1
    1 2021-06-30  128141.ZCB  0.134401         2
    2 2021-06-30  128143.ZCB  0.134401         3
    3 2021-06-30  128144.ZCB  0.134401         4
    4 2021-06-30  123079.ZCB  0.134401         5
    5 2021-06-30  123113.ZCB  0.134401         6
    6 2021-06-30  127021.ZCB  0.029014         7
    7 2021-06-30  123042.ZCB  0.029014         8
    8 2021-06-30  123043.ZCB  0.029014         9
    9 2021-06-30  110067.HCB -0.017028        10
    2022-06-02 11:00:31.105599 backtest transforming 1d, bars=1... 
    2022-06-02 11:00:31.105989 transform start_trading_day=2021-06-30 00:00:00, simulation period=2021-06-30 ~ 2021-12-30 
    2022-06-02 11:00:31.106033 transform source=None, before_start_days=8 
    2022-06-02 11:00:31.106616 transform replay_func=<cyfunction BacktestEngine.transform.<locals>.replay_bars_dt at 0x7f2e61fb3ad0> 
    处理data BarDatas(current_dt:2021-06-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-01 15:00:00)
    处理data BarDatas(current_dt:2021-07-02 15:00:00)
    处理data BarDatas(current_dt:2021-07-05 15:00:00)
    处理data BarDatas(current_dt:2021-07-06 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-07 15:00:00)
    处理data BarDatas(current_dt:2021-07-08 15:00:00)
    处理data BarDatas(current_dt:2021-07-09 15:00:00)
    处理data BarDatas(current_dt:2021-07-12 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-13 15:00:00)
    处理data BarDatas(current_dt:2021-07-14 15:00:00)
    处理data BarDatas(current_dt:2021-07-15 15:00:00)
    处理data BarDatas(current_dt:2021-07-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-19 15:00:00)
    处理data BarDatas(current_dt:2021-07-20 15:00:00)
    处理data BarDatas(current_dt:2021-07-21 15:00:00)
    处理data BarDatas(current_dt:2021-07-22 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-23 15:00:00)
    处理data BarDatas(current_dt:2021-07-26 15:00:00)
    处理data BarDatas(current_dt:2021-07-27 15:00:00)
    处理data BarDatas(current_dt:2021-07-28 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-07-29 15:00:00)
    处理data BarDatas(current_dt:2021-07-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-02 15:00:00)
    处理data BarDatas(current_dt:2021-08-03 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-04 15:00:00)
    处理data BarDatas(current_dt:2021-08-05 15:00:00)
    处理data BarDatas(current_dt:2021-08-06 15:00:00)
    处理data BarDatas(current_dt:2021-08-09 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-10 15:00:00)
    处理data BarDatas(current_dt:2021-08-11 15:00:00)
    处理data BarDatas(current_dt:2021-08-12 15:00:00)
    处理data BarDatas(current_dt:2021-08-13 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-16 15:00:00)
    处理data BarDatas(current_dt:2021-08-17 15:00:00)
    处理data BarDatas(current_dt:2021-08-18 15:00:00)
    处理data BarDatas(current_dt:2021-08-19 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-20 15:00:00)
    处理data BarDatas(current_dt:2021-08-23 15:00:00)
    处理data BarDatas(current_dt:2021-08-24 15:00:00)
    处理data BarDatas(current_dt:2021-08-25 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-08-26 15:00:00)
    处理data BarDatas(current_dt:2021-08-27 15:00:00)
    处理data BarDatas(current_dt:2021-08-30 15:00:00)
    处理data BarDatas(current_dt:2021-08-31 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-01 15:00:00)
    处理data BarDatas(current_dt:2021-09-02 15:00:00)
    处理data BarDatas(current_dt:2021-09-03 15:00:00)
    处理data BarDatas(current_dt:2021-09-06 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-07 15:00:00)
    处理data BarDatas(current_dt:2021-09-08 15:00:00)
    处理data BarDatas(current_dt:2021-09-09 15:00:00)
    处理data BarDatas(current_dt:2021-09-10 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-13 15:00:00)
    处理data BarDatas(current_dt:2021-09-14 15:00:00)
    处理data BarDatas(current_dt:2021-09-15 15:00:00)
    处理data BarDatas(current_dt:2021-09-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-17 15:00:00)
    处理data BarDatas(current_dt:2021-09-22 15:00:00)
    处理data BarDatas(current_dt:2021-09-23 15:00:00)
    处理data BarDatas(current_dt:2021-09-24 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-09-27 15:00:00)
    处理data BarDatas(current_dt:2021-09-28 15:00:00)
    处理data BarDatas(current_dt:2021-09-29 15:00:00)
    处理data BarDatas(current_dt:2021-09-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-08 15:00:00)
    处理data BarDatas(current_dt:2021-10-11 15:00:00)
    处理data BarDatas(current_dt:2021-10-12 15:00:00)
    处理data BarDatas(current_dt:2021-10-13 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-14 15:00:00)
    处理data BarDatas(current_dt:2021-10-15 15:00:00)
    处理data BarDatas(current_dt:2021-10-18 15:00:00)
    处理data BarDatas(current_dt:2021-10-19 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-20 15:00:00)
    处理data BarDatas(current_dt:2021-10-21 15:00:00)
    处理data BarDatas(current_dt:2021-10-22 15:00:00)
    处理data BarDatas(current_dt:2021-10-25 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-10-26 15:00:00)
    处理data BarDatas(current_dt:2021-10-27 15:00:00)
    处理data BarDatas(current_dt:2021-10-28 15:00:00)
    处理data BarDatas(current_dt:2021-10-29 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-01 15:00:00)
    处理data BarDatas(current_dt:2021-11-02 15:00:00)
    处理data BarDatas(current_dt:2021-11-03 15:00:00)
    处理data BarDatas(current_dt:2021-11-04 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-05 15:00:00)
    处理data BarDatas(current_dt:2021-11-08 15:00:00)
    处理data BarDatas(current_dt:2021-11-09 15:00:00)
    处理data BarDatas(current_dt:2021-11-10 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-11 15:00:00)
    处理data BarDatas(current_dt:2021-11-12 15:00:00)
    处理data BarDatas(current_dt:2021-11-15 15:00:00)
    处理data BarDatas(current_dt:2021-11-16 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-17 15:00:00)
    处理data BarDatas(current_dt:2021-11-18 15:00:00)
    处理data BarDatas(current_dt:2021-11-19 15:00:00)
    处理data BarDatas(current_dt:2021-11-22 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-23 15:00:00)
    处理data BarDatas(current_dt:2021-11-24 15:00:00)
    处理data BarDatas(current_dt:2021-11-25 15:00:00)
    处理data BarDatas(current_dt:2021-11-26 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-11-29 15:00:00)
    处理data BarDatas(current_dt:2021-11-30 15:00:00)
    处理data BarDatas(current_dt:2021-12-01 15:00:00)
    处理data BarDatas(current_dt:2021-12-02 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-03 15:00:00)
    处理data BarDatas(current_dt:2021-12-06 15:00:00)
    处理data BarDatas(current_dt:2021-12-07 15:00:00)
    处理data BarDatas(current_dt:2021-12-08 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-09 15:00:00)
    处理data BarDatas(current_dt:2021-12-10 15:00:00)
    处理data BarDatas(current_dt:2021-12-13 15:00:00)
    处理data BarDatas(current_dt:2021-12-14 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-15 15:00:00)
    处理data BarDatas(current_dt:2021-12-16 15:00:00)
    处理data BarDatas(current_dt:2021-12-17 15:00:00)
    处理data BarDatas(current_dt:2021-12-20 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-21 15:00:00)
    处理data BarDatas(current_dt:2021-12-22 15:00:00)
    处理data BarDatas(current_dt:2021-12-23 15:00:00)
    处理data BarDatas(current_dt:2021-12-24 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    处理data BarDatas(current_dt:2021-12-27 15:00:00)
    处理data BarDatas(current_dt:2021-12-28 15:00:00)
    处理data BarDatas(current_dt:2021-12-29 15:00:00)
    处理data BarDatas(current_dt:2021-12-30 15:00:00)
    buy_cash_weights [0.39038004999210163, 0.2463023887407299, 0.19519002499605081, 0.16812753627111746]
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    2022-06-02 11:00:34.433456 backtest run end! 
    2022-06-02 11:00:34.997779 run_backtest() finished! time cost 3.963s! 
    
    2022-06-02 11:00:36.775892 perf_render raw_perf=DataSource(24883e72afa744a38e82e34d3bb7c8a2T), benchmark_data=DataSource(2911c2589d5241fb97a051dc452a88edT), process stats...
    2022-06-02 11:00:37.095100 perf_render process transactions...
    2022-06-02 11:00:37.164453 perf_render process positions...
    2022-06-02 11:00:37.262288 perf_render process logs...
    2022-06-02 11:00:37.456240 perf_render process plot...
    
    • 收益率-0.68%
    • 年化收益率-1.32%
    • 基准收益率-5.79%
    • 阿尔法-0.04
    • 贝塔0.02
    • 夏普比率-2.6
    • 胜率0.25
    • 盈亏比0.33
    • 收益波动率1.66%
    • 信息比率0.03
    • 最大回撤1.37%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-fc9f0544f599458eb550f58c6f0ee1cd"}/bigcharts-data-end