{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-8529:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-8529:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-8536:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-8543:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-8550:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-118:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-132:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-8560:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-8543:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-8560:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-8536:input_data","from_node_id":"-8529:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-8536:data"},{"to_node_id":"-8550:input_data","from_node_id":"-8543:data"},{"to_node_id":"-136:input_data","from_node_id":"-8550:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"-118:model"},{"to_node_id":"-118:training_ds","from_node_id":"-132:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-136:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-03","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2017-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-8529","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-8529"},{"name":"features","node_id":"-8529"}],"output_ports":[{"name":"data","node_id":"-8529"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-8536","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-8536"},{"name":"features","node_id":"-8536"}],"output_ports":[{"name":"data","node_id":"-8536"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-8543","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"60","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-8543"},{"name":"features","node_id":"-8543"}],"output_ports":[{"name":"data","node_id":"-8543"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-8550","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-8550"},{"name":"features","node_id":"-8550"}],"output_ports":[{"name":"data","node_id":"-8550"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-8560","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配即为等权重\n context.stock_weights = [1 / stock_count for i in range(0, stock_count)] \n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-8560"},{"name":"options_data","node_id":"-8560"},{"name":"history_ds","node_id":"-8560"},{"name":"benchmark_ds","node_id":"-8560"},{"name":"trading_calendar","node_id":"-8560"}],"output_ports":[{"name":"raw_perf","node_id":"-8560"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-118","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-118"},{"name":"features","node_id":"-118"},{"name":"test_ds","node_id":"-118"},{"name":"base_model","node_id":"-118"}],"output_ports":[{"name":"model","node_id":"-118"},{"name":"feature_gains","node_id":"-118"},{"name":"m_lazy_run","node_id":"-118"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-132","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-132"},{"name":"features","node_id":"-132"}],"output_ports":[{"name":"data","node_id":"-132"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-136","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-136"},{"name":"features","node_id":"-136"}],"output_ports":[{"name":"data","node_id":"-136"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='-8529' Position='381,188,200,200'/><node_position Node='-8536' Position='385,280,200,200'/><node_position Node='-8543' Position='1076,237,200,200'/><node_position Node='-8550' Position='1081,330,200,200'/><node_position Node='-8560' Position='1037,751,200,200'/><node_position Node='-118' Position='638,561,200,200'/><node_position Node='-132' Position='376,467,200,200'/><node_position Node='-136' Position='1078,418,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2019-09-20 20:24:54.853734] INFO: bigquant: instruments.v2 开始运行..
[2019-09-20 20:24:55.079149] INFO: bigquant: 命中缓存
[2019-09-20 20:24:55.082722] INFO: bigquant: instruments.v2 运行完成[0.228992s].
[2019-09-20 20:24:55.090442] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
[2019-09-20 20:24:55.317116] INFO: bigquant: 命中缓存
[2019-09-20 20:24:55.321225] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.230772s].
[2019-09-20 20:24:55.339096] INFO: bigquant: input_features.v1 开始运行..
[2019-09-20 20:24:59.922664] INFO: bigquant: 命中缓存
[2019-09-20 20:24:59.929957] INFO: bigquant: input_features.v1 运行完成[4.590862s].
[2019-09-20 20:25:00.963202] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-09-20 20:25:01.314688] INFO: bigquant: 命中缓存
[2019-09-20 20:25:01.317025] INFO: bigquant: general_feature_extractor.v7 运行完成[0.353834s].
[2019-09-20 20:25:01.424717] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-09-20 20:25:02.623689] INFO: bigquant: 命中缓存
[2019-09-20 20:25:02.628045] INFO: bigquant: derived_feature_extractor.v3 运行完成[1.203318s].
[2019-09-20 20:25:02.635138] INFO: bigquant: join.v3 开始运行..
[2019-09-20 20:25:04.451751] INFO: bigquant: 命中缓存
[2019-09-20 20:25:04.453855] INFO: bigquant: join.v3 运行完成[1.818709s].
[2019-09-20 20:25:04.613674] INFO: bigquant: dropnan.v1 开始运行..
[2019-09-20 20:25:04.810365] INFO: bigquant: 命中缓存
[2019-09-20 20:25:04.812692] INFO: bigquant: dropnan.v1 运行完成[0.199011s].
[2019-09-20 20:25:04.819214] INFO: bigquant: stock_ranker_train.v5 开始运行..
[2019-09-20 20:25:05.107108] INFO: bigquant: 命中缓存
[2019-09-20 20:25:05.599614] INFO: bigquant: stock_ranker_train.v5 运行完成[0.780375s].
[2019-09-20 20:25:05.612811] INFO: bigquant: instruments.v2 开始运行..
[2019-09-20 20:25:06.629654] INFO: bigquant: 命中缓存
[2019-09-20 20:25:06.632143] INFO: bigquant: instruments.v2 运行完成[1.019322s].
[2019-09-20 20:25:06.755214] INFO: bigquant: general_feature_extractor.v7 开始运行..
[2019-09-20 20:25:07.129745] INFO: bigquant: 命中缓存
[2019-09-20 20:25:07.132081] INFO: bigquant: general_feature_extractor.v7 运行完成[0.376871s].
[2019-09-20 20:25:07.135072] INFO: bigquant: derived_feature_extractor.v3 开始运行..
[2019-09-20 20:25:07.344055] INFO: bigquant: 命中缓存
[2019-09-20 20:25:07.346551] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.211456s].
[2019-09-20 20:25:07.349655] INFO: bigquant: dropnan.v1 开始运行..
[2019-09-20 20:25:07.512216] INFO: bigquant: 命中缓存
[2019-09-20 20:25:07.515562] INFO: bigquant: dropnan.v1 运行完成[0.165895s].
[2019-09-20 20:25:07.522569] INFO: bigquant: stock_ranker_predict.v5 开始运行..
[2019-09-20 20:25:09.724271] INFO: StockRanker预测: /y_2015 ..
[2019-09-20 20:25:12.135111] INFO: StockRanker预测: /y_2016 ..
[2019-09-20 20:25:22.298269] INFO: bigquant: stock_ranker_predict.v5 运行完成[14.775672s].
[2019-09-20 20:25:22.837791] INFO: bigquant: backtest.v8 开始运行..
[2019-09-20 20:25:22.850551] INFO: bigquant: biglearning backtest:V8.2.13
[2019-09-20 20:25:22.852604] INFO: bigquant: product_type:stock by specified
[2019-09-20 20:25:23.553306] INFO: bigquant: cached.v2 开始运行..
[2019-09-20 20:25:23.616613] INFO: bigquant: 命中缓存
[2019-09-20 20:25:23.621678] INFO: bigquant: cached.v2 运行完成[0.068367s].
[2019-09-20 20:25:45.214942] INFO: algo: TradingAlgorithm V1.5.8
[2019-09-20 20:25:48.593234] INFO: algo: trading transform...
[2019-09-20 20:26:11.063367] INFO: Performance: Simulated 488 trading days out of 488.
[2019-09-20 20:26:11.068167] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2019-09-20 20:26:11.072218] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2019-09-20 20:26:30.494662] INFO: bigquant: backtest.v8 运行完成[67.656878s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-1b1303d0738c40db8245f0e4372b1852"}/bigcharts-data-end
- 收益率271.85%
- 年化收益率97.03%
- 基准收益率-6.33%
- 阿尔法0.76
- 贝塔0.98
- 夏普比率1.72
- 胜率0.62
- 盈亏比0.92
- 收益波动率43.34%
- 信息比率0.16
- 最大回撤53.34%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-488390ec0db241fd97c024b30e4b8541"}/bigcharts-data-end