# 本代码由可视化策略环境自动生成 2022年1月23日 17:37
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m6_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
df = input_1.read_df()
ins = m1.data.read_pickle()['instruments']
start = m1.data.read_pickle()['start_date']
end = m1.data.read_pickle()['end_date']
df1 = D.features(ins,start,end,fields=['rank_turn_0','rank_amount_0','st_status_0'])
df_final = pd.merge(df,df1,on=['date','instrument'])
df_final = df_final[df_final['instrument'].str.startswith("688") == False]
df_final = df_final[df_final['instrument'].str.startswith("3") == False]
df_final = df_final[df_final["st_status_0"] == 0]
df_final = df_final[df_final['rank_turn_0'] >= 0.9]
df_final = df_final[df_final['rank_amount_0'] >= 0.85]
print("用于训练的样本总个数为",len(df_final))
print(df_final.iloc[0])
data_1 = DataSource.write_df(df_final)
return Outputs(data_1=data_1, data_2=None, data_3=None)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m6_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m8_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
df = input_1.read_df()
ins = m9.data.read_pickle()['instruments']
start = m9.data.read_pickle()['start_date']
end = m9.data.read_pickle()['end_date']
df1 = D.features(ins,start,end,fields=['rank_turn_0','rank_amount_0','st_status_0'])
df_final = pd.merge(df,df1,on=['date','instrument'])
df_final = df_final[df_final['instrument'].str.startswith("688") == False]
df_final = df_final[df_final['instrument'].str.startswith("3") == False]
df_final = df_final[df_final["st_status_0"] == 0]
df_final = df_final[df_final['rank_turn_0'] >= 0.9]
df_final = df_final[df_final['rank_amount_0'] >= 0.85]
print("用于回测的样本总个数为",len(df_final))
data_1 = DataSource.write_df(df_final)
return Outputs(data_1=data_1, data_2=None, data_3=None)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m8_post_run_bigquant_run(outputs):
return outputs
# 回测引擎:初始化函数,只执行一次
def m4_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 持股数
context.stock_num = 10
#权重
context.weight = 1 / context.stock_num
#计数
context.count = 0
#最小持仓天数
context.min_hold_days = 15
#股票最近卖出日
context.sell_date = {}
#股票最少买入日
context.min_sell_days = 15
# 回测引擎:每日数据处理函数,每天执行一次
def m4_handle_data_bigquant_run(context, data):
# 按日期过滤得到今日的预测数据
today = data.current_dt.strftime('%Y-%m-%d')
#含有买入时间的持仓信息
positions_lastdate = {e.symbol:p.last_sale_date for e,p in context.portfolio.positions.items()}
ranker_prediction = context.ranker_prediction[context.ranker_prediction.date == today]
hold_stocks = list(positions_lastdate.keys())
#卖出分位数过滤
threshold_sell = ranker_prediction['position'].quantile(q=0.3)
sell_df = ranker_prediction[ranker_prediction['position']>threshold_sell]
sell_stocks = list(sell_df.instrument)
sell_stocks = list(set(hold_stocks).intersection(set(sell_stocks)))
#卖出
for instrument in sell_stocks:
#满足持仓天数大于指定天数
if data.current_dt - positions_lastdate[instrument]>=datetime.timedelta(context.min_hold_days):
context.order_target(context.symbol(instrument), 0)
#保存卖出时间
context.sell_date[instrument] = data.current_dt
else:
print(instrument,"持仓不足天数,不能卖出!","买入时间:",positions_lastdate[instrument],"当前时间:",data.current_dt)
pass
need_buy_num = context.stock_num - len(hold_stocks) + len(sell_stocks)
#买入分位数过滤
threshold_buy = ranker_prediction['position'].quantile(q=0.01)
buy_df = ranker_prediction[ranker_prediction['position']<threshold_buy]
buy_stocks = list(buy_df.instrument)
if(len(buy_stocks)>need_buy_num):
buy_stocks = buy_stocks[0:need_buy_num]
#买入
for instrument in buy_stocks:
sell_date = context.sell_date.get(instrument)
if sell_date!=None and data.current_dt - sell_date<datetime.timedelta(context.min_sell_days):
print(instrument,"不足天数不能买入!:","卖出时间:",sell_date,"当前时间:",data.current_dt)
continue
context.order_target_percent(context.symbol(instrument), context.weight)
# 回测引擎:准备数据,只执行一次
def m4_prepare_bigquant_run(context):
pass
m1 = M.instruments.v2(
start_date='2014-01-01',
end_date='2019-1-01',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m2 = M.advanced_auto_labeler.v2(
instruments=m1.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(close, -2) / shift(open, -1)
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.03))
# 将分数映射到分类,这里使用20个分类
all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
start_date='',
end_date='',
benchmark='000300.SHA',
drop_na_label=True,
cast_label_int=True
)
m3 = M.input_features.v1(
features="""
shift(stock_status_CN_STOCK_A__price_limit_status, 10)
# return_10"""
)
m15 = M.general_feature_extractor.v7(
instruments=m1.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=0
)
m16 = M.derived_feature_extractor.v3(
input_data=m15.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m7 = M.join.v3(
data1=m2.data,
data2=m16.data,
on='date,instrument',
how='inner',
sort=False
)
m6 = M.cached.v3(
input_1=m7.data,
run=m6_run_bigquant_run,
post_run=m6_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m9 = M.instruments.v2(
start_date=T.live_run_param('trading_date', '2019-01-01'),
end_date=T.live_run_param('trading_date', '2025-01-01'),
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m17 = M.general_feature_extractor.v7(
instruments=m9.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=30
)
m18 = M.derived_feature_extractor.v3(
input_data=m17.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m8 = M.cached.v3(
input_1=m18.data,
run=m8_run_bigquant_run,
post_run=m8_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m10 = M.lightgbm.v2(
training_ds=m6.data_1,
features=m3.data,
predict_ds=m8.data_1,
num_boost_round=79,
objective='排序(ndcg)',
num_class=1,
num_leaves=60,
learning_rate=0.1,
min_data_in_leaf=900,
max_bin=1023,
key_cols='date,instrument',
group_col='date',
random_seed=101,
other_train_parameters={'n_jobs':4,'label_gain':','.join([str(x) for x in range(20)]),"max_position":29,"eval_at":"1,3,5,10"}
)
m19 = M.trade.v4(
instruments=m9.data,
options_data=m10.predictions,
start_date='2019-01-01',
end_date='2022-03-07',
initialize=m19_initialize_bigquant_run,
handle_data=m19_handle_data_bigquant_run,
prepare=m19_prepare_bigquant_run,
before_trading_start=m19_before_trading_start_bigquant_run,
volume_limit=1,
order_price_field_buy='open',
order_price_field_sell='open',
capital_base=10000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='真实价格',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.SHA'
)
[2022-06-28 21:53:38.747062] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-06-28 21:53:38.756298] INFO: moduleinvoker: 命中缓存
[2022-06-28 21:53:38.759206] INFO: moduleinvoker: instruments.v2 运行完成[0.012144s].
[2022-06-28 21:53:38.788825] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-06-28 21:53:38.807196] INFO: moduleinvoker: 命中缓存
[2022-06-28 21:53:38.810949] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.022119s].
[2022-06-28 21:53:38.818991] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-06-28 21:53:38.827278] INFO: moduleinvoker: 命中缓存
[2022-06-28 21:53:38.830257] INFO: moduleinvoker: input_features.v1 运行完成[0.011264s].
[2022-06-28 21:53:38.895362] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-06-28 21:53:38.911505] INFO: moduleinvoker: 命中缓存
[2022-06-28 21:53:38.914397] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.019046s].
[2022-06-28 21:53:38.930481] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-06-28 21:53:38.943039] INFO: moduleinvoker: 命中缓存
[2022-06-28 21:53:38.945477] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.015004s].
[2022-06-28 21:53:38.962550] INFO: moduleinvoker: join.v3 开始运行..
[2022-06-28 21:53:38.973026] INFO: moduleinvoker: 命中缓存
[2022-06-28 21:53:38.975795] INFO: moduleinvoker: join.v3 运行完成[0.013254s].
[2022-06-28 21:53:39.004895] INFO: moduleinvoker: cached.v3 开始运行..
[2022-06-28 21:53:39.037169] INFO: moduleinvoker: 命中缓存
[2022-06-28 21:53:39.039238] INFO: moduleinvoker: cached.v3 运行完成[0.034379s].
[2022-06-28 21:53:39.066077] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-06-28 21:53:39.136101] INFO: moduleinvoker: instruments.v2 运行完成[0.070023s].
[2022-06-28 21:53:39.151303] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-06-28 21:53:39.479670] INFO: 基础特征抽取: 年份 2018, 特征行数=71261
[2022-06-28 21:53:40.558821] INFO: 基础特征抽取: 年份 2019, 特征行数=890398
[2022-06-28 21:53:41.895451] INFO: 基础特征抽取: 年份 2020, 特征行数=951963
[2022-06-28 21:53:43.714900] INFO: 基础特征抽取: 年份 2021, 特征行数=1065332
[2022-06-28 21:53:44.807414] INFO: 基础特征抽取: 年份 2022, 特征行数=548120
[2022-06-28 21:53:44.945897] INFO: 基础特征抽取: 年份 2023, 特征行数=0
[2022-06-28 21:53:45.076077] INFO: 基础特征抽取: 年份 2024, 特征行数=0
[2022-06-28 21:53:45.336084] INFO: 基础特征抽取: 年份 2025, 特征行数=0
[2022-06-28 21:53:45.436573] INFO: 基础特征抽取: 总行数: 3527074
[2022-06-28 21:53:45.443932] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[6.292635s].
[2022-06-28 21:53:45.455656] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-06-28 21:53:52.946317] INFO: derived_feature_extractor: 提取完成 shift(stock_status_CN_STOCK_A__price_limit_status, -1)**shift(stock_status_CN_STOCK_A__price_limit_status, 1), 1.038s
[2022-06-28 21:53:53.325035] INFO: derived_feature_extractor: /y_2018, 71261
[2022-06-28 21:53:55.182006] INFO: derived_feature_extractor: /y_2019, 890398
[2022-06-28 21:53:57.326230] INFO: derived_feature_extractor: /y_2020, 951963
[2022-06-28 21:53:59.601136] INFO: derived_feature_extractor: /y_2021, 1065332
[2022-06-28 21:54:01.078289] INFO: derived_feature_extractor: /y_2022, 548120
[2022-06-28 21:54:02.307798] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[16.85214s].
[2022-06-28 21:54:02.327410] INFO: moduleinvoker: cached.v3 开始运行..
[2022-06-28 21:54:34.508564] INFO: moduleinvoker: cached.v3 运行完成[32.181175s].
[2022-06-28 21:54:34.527621] INFO: moduleinvoker: lightgbm.v2 开始运行..
[2022-06-28 21:54:36.713625] INFO: moduleinvoker: lightgbm.v2 运行完成[2.186011s].