复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-674:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-674:data2","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-1003:input_data","from_node_id":"-238:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-733:data"},{"to_node_id":"-1009:input_ds","from_node_id":"-1003:data"},{"to_node_id":"-86:input_data","from_node_id":"-1003:data"},{"to_node_id":"-250:options_data","from_node_id":"-674:data"},{"to_node_id":"-733:input_data","from_node_id":"-222:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-12-30","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -30) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\n#return_5\n#pe_ttm_0\nclose_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,20)\nclose_0/open_0\nopen_0/mean(close_0,5)\nopen_0/mean(close_0,10)\nopen_0/mean(close_0,20)\nhigh_0/adjust_factor_0\nlow_0/adjust_factor_0\n\n#timeperiod移动平均线\n#zhouma34=ta_ma(close_0, timeperiod=166)/adjust_factor_0\nzhouma34=ta_ma(close_0, timeperiod=166)\n#timeperiod移动平均线\nzhouma55=ta_ma(close_0, timeperiod=258)\nisup=zhouma34/zhouma55\n#sy=shift(close_0, -100)/shift(open_0, -1)\n\n#ts_max(high_0,10)/adjust_factor_0\n#ts_min(low_0,10)/adjust_factor_0\n\nts_argmax(high_0, 258*5)\n#4年高点,1年按258个交易日算\nisgaodian=where(ts_argmax(high_0, 258*4)<500.0,1,0)\n\n#1年低点,1年按258个交易日算\nts_argmin(low_0, 258*1)\nisdidian=where(ts_argmin(low_0, 258*1)<100.0,1,0)\n\n#半年高点,1年按258个交易日算\nisbanniangaodian=where(ts_argmax(high_0, 128)<80.0,1,0)\n#在周34-55均线区间,日166-258\niszaiquejian=where((open_0<=zhouma34) & (close_0>=zhouma55),1,0)\n#4-5线重合\njunxian=where((ta_ma(close_0, timeperiod=5)<=high_0) & (ta_ma(close_0, timeperiod=13)<=high_0) &\\\n (ta_ma(close_0, timeperiod=20)<=high_0) & (ta_ma(close_0, timeperiod=34)<=high_0) &\\\n (ta_ma(close_0, timeperiod=55)<=high_0) & (ta_ma(close_0, timeperiod=5) >=low_0) &\\\n (ta_ma(close_0, timeperiod=13)>=low_0) & (ta_ma(close_0, timeperiod=20)>=low_0) &\\\n (ta_ma(close_0, timeperiod=34)>=low_0) & (ta_ma(close_0, timeperiod=55)>=low_0) &\\\n (return_0>0.001),1,0)\n#55日均线,跌破止损,\nri55=ta_ma(close_0, timeperiod=55)\nshangri55=shift(ta_ma(close_0, timeperiod=55),2)\n#曾经前几天下过55线,触碰过日258线\n#isdiyu258=where(ts_min(low_0, 3)<zhouma55,1,0)\n\n#tmax=ts_argmax(high_0, 258*5)\n\n#反弹比例,选比例最高的10-20只交易,后面调试\nyiniandidian=ts_min(low_0, 258*1)\nbanniangaodian=ts_max(high_0, 128*1)\nfantanbili=banniangaodian/yiniandidian\n\n#排除ST\nst_status_0\n#时间序列函数, d 天内的最大值\n#ts_max(high_0, 258*4)\n#时间序列函数, d 天内的最小值\n#ts_min(low_0, 258*1)\n#是否是沪深300\nin_csi300_0\n#是否是中证500\nin_csi500_0\n#营业收入单季度环比增长率\nfs_operating_revenue_qoq_0\n#营业收入同比增长率\nfs_operating_revenue_yoy_0\n#归属母公司股东的净利润单季度环比增长率\nfs_net_profit_qoq_0\n#主力净流入占比\nmf_net_pct_main_0\n\n#avg_amount_* 过去 * 个交易日的平均交易额\nliangisup=avg_amount_5/avg_amount_10\n\n#isxiadie=where(ts_max(high_0, 258*4)>ts_min(low_0, 258*1),1,0)\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2020-12-30","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"2000","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"2000","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n print('初始化函数,只执行一次')\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 10\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i+2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.3\n context.options['hold_days'] = 30\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"def getMa(today,context,instruments):\n # 加载原始数据\n import datetime\n stock_raw_data = D.history_data(instruments, today+datetime.timedelta(days=-100), today, ['date','close','low'])\n #print('11111',stock_raw_data)\n stock_raw_data=stock_raw_data.iloc[-55:] \n #stock_raw_data=stock_raw_data[:55]\n #print('22222',stock_raw_data)\n sumMa=0\n lastClose=0\n for index,row in stock_raw_data.iterrows():\n #print(index,row)\n sumMa += row['close']\n lastClose=row['close']\n \n # 包含多个周期均线值的股票数据\n # stock_ma_data = stock_raw_data.groupby('instrument').apply(ma_calculate)\n return [sumMa/55,lastClose]\n\n\n# 计算多个周期均线的函数\ndef ma_calculate(df):\n #ma_list = [5,10,34,55]\n for ma_len in ma_list:\n print('ma_len==',ma_len)\n df['ma_'+str(ma_len)] = df['close'].rolling(ma_len).mean()\n return df\n\n# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n df = context.options['data'].read_df()\n df_today = df[df.date == data.current_dt.strftime('%Y-%m-%d')]\n df_today.set_index('instrument')\n \n today = data.current_dt.strftime('%Y-%m-%d')\n #print('日期:',today)\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n \n print('context.portfolio.cash:',context.portfolio.cash)\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n print('cash_avg==',cash_avg,' cash_for_buy:',cash_for_buy,' context.portfolio.cash:',context.portfolio.cash)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n print('context.portfolio.portfolio_value:',context.portfolio.portfolio_value)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n print('is_staging:',is_staging,' cash_for_sell:',cash_for_sell)\n \n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n stocks=len(equities)\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n #if not is_staging and cash_for_sell > 0:\n if not is_staging :\n if stocks > 0:\n for i in equities.keys():\n # print(today,' sell I===',i)\n instruments=[]\n instruments.append(i) \n #ri55=getMa(data.current_dt,context,instruments)\n #print('df after get ma 55==',ri55)\n try :\n a=getMa(data.current_dt,context,instruments)\n ri55=a[0]\n lastClose=a[1]\n except :\n ri55=0\n lastClose=0\n print(i,today,'ma55===',ri55,'lastClose===',lastClose)\n \n #try :\n # ri34s=list(df_today[df_today.instrument==i]['ri34'])\n # ri34=ri34s[0]\n #print('df_today===',df_today)\n # ri55s=list(df_today[df_today.instrument==i]['ma_20'])\n \n # print('ri55===',ri55[0])\n # ri55s=list(df_today[df_today.instrument==i]['ri55'])\n # print('ri55s==',ri55s)\n # ri55=ri55s[0]\n #except :\n # ri34=0\n # ri55=0\n \n stock_market_price = data.current(context.symbol(i), 'price') # 最新市场价格\n stock_market_today_high = data.current(context.symbol(i), 'high') #今日最高价 \n stock_market_today_close = data.current(context.symbol(i), 'close') #今日收盘价\n last_sale_date = equities[i].last_sale_date # 上次交易日期\n last_cost_price = equities[i].cost_basis # 上次交易金额\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n # 最高收益\n #high_return = (highclose_price_since_buy-last_cost_price)/last_cost_price\n \n target_return = stock_market_today_close/last_cost_price\n print(today,i,'stock_market_today_close== ',stock_market_today_close)\n if hold_days>=30 :\n context.order_target(context.symbol(i), 0)\n print(today,'超期卖出 :','收益: ',target_return,equities[i], ' context.symbol(i):',context.symbol(i))\n context.order_target(context.symbol(i), 0)\n stocks = stocks-1\n context.portfolio.cash=context.portfolio.cash+positions[i]\n elif target_return>=1.2 :\n context.order_target(context.symbol(i), 0)\n print(today,' 盈利卖出 :','收益: ',target_return,equities[i],' context.symbol(i):',context.symbol(i))\n stocks = stocks-1\n context.portfolio.cash=context.portfolio.cash+positions[i]\n elif lastClose<ri55 :\n context.order_target(context.symbol(i), 0)\n print(today,' 跌破55日线卖出 :','收益: ',target_return,equities[i],' context.symbol(i):',context.symbol(i))\n stocks = stocks-1\n context.portfolio.cash=context.portfolio.cash+positions[i]\n elif target_return<=0.9 :\n context.order_target(context.symbol(i), 0)\n print(today,' 止损卖出 :','收益: ',target_return,equities[i],' context.symbol(i):',context.symbol(i))\n stocks = stocks-1\n context.portfolio.cash=context.portfolio.cash+positions[i]\n \n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n #buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:10-stocks])\n #print('buy_instruments:',buy_instruments,'buy_cash_weights:',buy_cash_weights,'ranker_prediction:',ranker_prediction)\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n cash = context.portfolio.cash/(10-stocks)\n for i, instrument in enumerate(buy_instruments):\n \n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n #print(today,i,cash)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n \n print(today,' 买入 ',instrument, ' 金额',cash) \n \n ","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n print('准备数据,只执行一次')\n df = context.options['data'].read_df()\n # 函数:求满足开仓条件的股票列表\n def open_pos_con(df):\n return list(df[df['fantanbili']>0].instrument)\n # 函数:求满足平仓条件的股票列表\n def close_pos_con(df):\n return list(df[df['fantanbili']>0].instrument)\n \n # 每日卖出股票的数据框\n context.daily_sell_stock= df.groupby('date').apply(close_pos_con) \n # 每日买入股票的数据框\n context.daily_buy_stock= df.groupby('date').apply(open_pos_con) \n \n #---------\n stock_raw_data = D.history_data(context.instruments, context.start_date, context.end_date, ['close','low'])\n # 包含多个周期均线值的股票数据\n stock_ma_data = stock_raw_data.groupby('instrument').apply(ma_calculate)\n \n\n# 计算多个周期均线的函数\ndef ma_calculate(df):\n ma_list = [5,10,20,40,120]\n for ma_len in ma_list:\n df['ma_'+str(ma_len)] = df['close'].rolling( ma_len).mean()\n return df\n\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-733","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"isgaodian==1&isdidian==1&isbanniangaodian==1&st_status_0==0&date>'2019-01-01'","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-733"}],"output_ports":[{"name":"data","node_id":"-733"},{"name":"left_data","node_id":"-733"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-987","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"fantanbili","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-987"},{"name":"sort_by_ds","node_id":"-987"}],"output_ports":[{"name":"sorted_data","node_id":"-987"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-1003","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"isgaodian==1&isdidian==1&isbanniangaodian==1&st_status_0==0&date>='2020-01-01'","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1003"}],"output_ports":[{"name":"data","node_id":"-1003"},{"name":"left_data","node_id":"-1003"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-1009","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"fantanbili","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-1009"},{"name":"sort_by_ds","node_id":"-1009"}],"output_ports":[{"name":"sorted_data","node_id":"-1009"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-674","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"left","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-674"},{"name":"data2","node_id":"-674"}],"output_ports":[{"name":"data","node_id":"-674"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='212,51.553131103515625,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='583,44.553138732910156,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='625,679,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='343,493,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='726,806,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='936,-29,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,600,200,200'/><node_position Node='-86' Position='1038,566,200,200'/><node_position Node='-215' Position='384,173,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='863,1076,200,200'/><node_position Node='-733' Position='460,358,200,200'/><node_position Node='-987' Position='724,446,200,200'/><node_position Node='-1003' Position='1188,405.1062927246094,200,200'/><node_position Node='-1009' Position='1271,491,200,200'/><node_position Node='-674' Position='867,948,200,200'/><node_position Node='-222' Position='477,271,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [2]:
    # 本代码由可视化策略环境自动生成 2022年3月31日 22:52
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        print('初始化函数,只执行一次')
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 10
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i+2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.3
        context.options['hold_days'] = 30
    
    def getMa(today,context,instruments):
        # 加载原始数据
        import datetime
        stock_raw_data = D.history_data(instruments, today+datetime.timedelta(days=-100), today, ['date','close','low'])
        #print('11111',stock_raw_data)
        stock_raw_data=stock_raw_data.iloc[-55:] 
        #stock_raw_data=stock_raw_data[:55]
        #print('22222',stock_raw_data)
        sumMa=0
        lastClose=0
        for index,row in stock_raw_data.iterrows():
            #print(index,row)
            sumMa += row['close']
            lastClose=row['close']
            
        # 包含多个周期均线值的股票数据
       # stock_ma_data = stock_raw_data.groupby('instrument').apply(ma_calculate)
        return [sumMa/55,lastClose]
    
    
    # 计算多个周期均线的函数
    def ma_calculate(df):
        #ma_list = [5,10,34,55]
        for ma_len in ma_list:
            print('ma_len==',ma_len)
            df['ma_'+str(ma_len)] = df['close'].rolling(ma_len).mean()
        return df
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
        df = context.options['data'].read_df()
        df_today = df[df.date == data.current_dt.strftime('%Y-%m-%d')]
        df_today.set_index('instrument')
        
        today = data.current_dt.strftime('%Y-%m-%d')
        #print('日期:',today)
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        
        print('context.portfolio.cash:',context.portfolio.cash)
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        print('cash_avg==',cash_avg,'  cash_for_buy:',cash_for_buy,' context.portfolio.cash:',context.portfolio.cash)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        print('context.portfolio.portfolio_value:',context.portfolio.portfolio_value)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.portfolio.positions.items()}
        print('is_staging:',is_staging,' cash_for_sell:',cash_for_sell)
        
        equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}
        stocks=len(equities)
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        #if not is_staging and cash_for_sell > 0:
        if not is_staging :
            if stocks > 0:
                for i in equities.keys():
                   # print(today,' sell I===',i)
                    instruments=[]
                    instruments.append(i)  
                    #ri55=getMa(data.current_dt,context,instruments)
                    #print('df after get ma 55==',ri55)
                    try :
                        a=getMa(data.current_dt,context,instruments)
                        ri55=a[0]
                        lastClose=a[1]
                    except :
                        ri55=0
                        lastClose=0
                    print(i,today,'ma55===',ri55,'lastClose===',lastClose)
                    
                    #try :
                    #   ri34s=list(df_today[df_today.instrument==i]['ri34'])
                    #    ri34=ri34s[0]
                    #print('df_today===',df_today)
                   # ri55s=list(df_today[df_today.instrument==i]['ma_20'])
                
                   # print('ri55===',ri55[0])
                   # ri55s=list(df_today[df_today.instrument==i]['ri55'])
                   # print('ri55s==',ri55s)
                   # ri55=ri55s[0]
                    #except :
                    #    ri34=0
                    #    ri55=0
                        
                    stock_market_price = data.current(context.symbol(i), 'price')  # 最新市场价格
                    stock_market_today_high = data.current(context.symbol(i), 'high') #今日最高价      
                    stock_market_today_close = data.current(context.symbol(i), 'close') #今日收盘价
                    last_sale_date = equities[i].last_sale_date   # 上次交易日期
                    last_cost_price = equities[i].cost_basis # 上次交易金额
                    delta_days = data.current_dt - last_sale_date  
                    hold_days = delta_days.days # 持仓天数
            # 最高收益
            #high_return = (highclose_price_since_buy-last_cost_price)/last_cost_price
            
                    target_return = stock_market_today_close/last_cost_price
                    print(today,i,'stock_market_today_close== ',stock_market_today_close)
                    if hold_days>=30 :
                        context.order_target(context.symbol(i), 0)
                        print(today,'超期卖出 :','收益: ',target_return,equities[i], ' context.symbol(i):',context.symbol(i))
                        context.order_target(context.symbol(i), 0)
                        stocks = stocks-1
                        context.portfolio.cash=context.portfolio.cash+positions[i]
                    elif target_return>=1.2 :
                        context.order_target(context.symbol(i), 0)
                        print(today,' 盈利卖出 :','收益: ',target_return,equities[i],' context.symbol(i):',context.symbol(i))
                        stocks = stocks-1
                        context.portfolio.cash=context.portfolio.cash+positions[i]
                    elif lastClose<ri55 :
                        context.order_target(context.symbol(i), 0)
                        print(today,' 跌破55日线卖出 :','收益: ',target_return,equities[i],' context.symbol(i):',context.symbol(i))
                        stocks = stocks-1
                        context.portfolio.cash=context.portfolio.cash+positions[i]
                    elif target_return<=0.9 :
                        context.order_target(context.symbol(i), 0)
                        print(today,' 止损卖出 :','收益: ',target_return,equities[i],' context.symbol(i):',context.symbol(i))
                        stocks = stocks-1
                        context.portfolio.cash=context.portfolio.cash+positions[i]
                        
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        #buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:10-stocks])
        #print('buy_instruments:',buy_instruments,'buy_cash_weights:',buy_cash_weights,'ranker_prediction:',ranker_prediction)
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        cash = context.portfolio.cash/(10-stocks)
        for i, instrument in enumerate(buy_instruments):
          
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            #print(today,i,cash)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
                
            print(today,' 买入 ',instrument, ' 金额',cash)   
                
                
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        # 加载预测数据
        print('准备数据,只执行一次')
        df = context.options['data'].read_df()
        # 函数:求满足开仓条件的股票列表
        def open_pos_con(df):
            return list(df[df['fantanbili']>0].instrument)
        # 函数:求满足平仓条件的股票列表
        def close_pos_con(df):
            return list(df[df['fantanbili']>0].instrument)
        
        # 每日卖出股票的数据框
        context.daily_sell_stock= df.groupby('date').apply(close_pos_con)  
        # 每日买入股票的数据框
        context.daily_buy_stock= df.groupby('date').apply(open_pos_con)  
        
        #---------
        stock_raw_data = D.history_data(context.instruments, context.start_date, context.end_date, ['close','low'])
        # 包含多个周期均线值的股票数据
        stock_ma_data = stock_raw_data.groupby('instrument').apply(ma_calculate)
       
    
    # 计算多个周期均线的函数
    def ma_calculate(df):
        ma_list = [5,10,20,40,120]
        for ma_len in ma_list:
            df['ma_'+str(ma_len)] = df['close'].rolling( ma_len).mean()
        return df
    
    
    
    m1 = M.instruments.v2(
        start_date='2019-01-01',
        end_date='2019-12-30',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -30) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.HIX',
        drop_na_label=True,
        cast_label_int=True
    )
    
    m3 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    #return_5
    #pe_ttm_0
    close_0/mean(close_0,5)
    close_0/mean(close_0,10)
    close_0/mean(close_0,20)
    close_0/open_0
    open_0/mean(close_0,5)
    open_0/mean(close_0,10)
    open_0/mean(close_0,20)
    high_0/adjust_factor_0
    low_0/adjust_factor_0
    
    #timeperiod移动平均线
    #zhouma34=ta_ma(close_0, timeperiod=166)/adjust_factor_0
    zhouma34=ta_ma(close_0, timeperiod=166)
    #timeperiod移动平均线
    zhouma55=ta_ma(close_0, timeperiod=258)
    isup=zhouma34/zhouma55
    #sy=shift(close_0, -100)/shift(open_0, -1)
    
    #ts_max(high_0,10)/adjust_factor_0
    #ts_min(low_0,10)/adjust_factor_0
    
    ts_argmax(high_0, 258*5)
    #4年高点,1年按258个交易日算
    isgaodian=where(ts_argmax(high_0, 258*4)<500.0,1,0)
    
    #1年低点,1年按258个交易日算
    ts_argmin(low_0, 258*1)
    isdidian=where(ts_argmin(low_0, 258*1)<100.0,1,0)
    
    #半年高点,1年按258个交易日算
    isbanniangaodian=where(ts_argmax(high_0, 128)<80.0,1,0)
    #在周34-55均线区间,日166-258
    iszaiquejian=where((open_0<=zhouma34) & (close_0>=zhouma55),1,0)
    #4-5线重合
    junxian=where((ta_ma(close_0, timeperiod=5)<=high_0) & (ta_ma(close_0, timeperiod=13)<=high_0) &\
                           (ta_ma(close_0, timeperiod=20)<=high_0) & (ta_ma(close_0, timeperiod=34)<=high_0) &\
                           (ta_ma(close_0, timeperiod=55)<=high_0) & (ta_ma(close_0, timeperiod=5) >=low_0) &\
                           (ta_ma(close_0, timeperiod=13)>=low_0) & (ta_ma(close_0, timeperiod=20)>=low_0) &\
                           (ta_ma(close_0, timeperiod=34)>=low_0) & (ta_ma(close_0, timeperiod=55)>=low_0) &\
                           (return_0>0.001),1,0)
    #55日均线,跌破止损,
    ri55=ta_ma(close_0, timeperiod=55)
    shangri55=shift(ta_ma(close_0, timeperiod=55),2)
    #曾经前几天下过55线,触碰过日258线
    #isdiyu258=where(ts_min(low_0, 3)<zhouma55,1,0)
    
    #tmax=ts_argmax(high_0, 258*5)
    
    #反弹比例,选比例最高的10-20只交易,后面调试
    yiniandidian=ts_min(low_0, 258*1)
    banniangaodian=ts_max(high_0, 128*1)
    fantanbili=banniangaodian/yiniandidian
    
    #排除ST
    st_status_0
    #时间序列函数, d 天内的最大值
    #ts_max(high_0, 258*4)
    #时间序列函数, d 天内的最小值
    #ts_min(low_0, 258*1)
    #是否是沪深300
    in_csi300_0
    #是否是中证500
    in_csi500_0
    #营业收入单季度环比增长率
    fs_operating_revenue_qoq_0
    #营业收入同比增长率
    fs_operating_revenue_yoy_0
    #归属母公司股东的净利润单季度环比增长率
    fs_net_profit_qoq_0
    #主力净流入占比
    mf_net_pct_main_0
    
    #avg_amount_* 过去 * 个交易日的平均交易额
    liangisup=avg_amount_5/avg_amount_10
    
    #isxiadie=where(ts_max(high_0, 258*4)>ts_min(low_0, 258*1),1,0)
    
    """
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=2000
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m5 = M.filter.v3(
        input_data=m16.data,
        expr='isgaodian==1&isdidian==1&isbanniangaodian==1&st_status_0==0&date>\'2019-01-01\'',
        output_left_data=True
    )
    
    m7 = M.join.v3(
        data1=m2.data,
        data2=m5.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m13 = M.dropnan.v1(
        input_data=m7.data
    )
    
    m6 = M.stock_ranker_train.v5(
        training_ds=m13.data,
        features=m3.data,
        learning_algorithm='排序',
        number_of_leaves=30,
        minimum_docs_per_leaf=1000,
        number_of_trees=20,
        learning_rate=0.1,
        max_bins=1023,
        feature_fraction=1,
        m_lazy_run=False
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2020-01-01'),
        end_date=T.live_run_param('trading_date', '2020-12-30'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=2000
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m12 = M.filter.v3(
        input_data=m18.data,
        expr='isgaodian==1&isdidian==1&isbanniangaodian==1&st_status_0==0&date>=\'2020-01-01\'',
        output_left_data=True
    )
    
    m20 = M.sort.v5(
        input_ds=m12.data,
        sort_by='fantanbili',
        group_by='date',
        keep_columns='--',
        ascending=False
    )
    
    m14 = M.dropnan.v1(
        input_data=m12.data
    )
    
    m8 = M.stock_ranker_predict.v5(
        model=m6.model,
        data=m14.data,
        m_lazy_run=False
    )
    
    m4 = M.join.v3(
        data1=m8.predictions,
        data2=m14.data,
        on='date,instrument',
        how='left',
        sort=False
    )
    
    m19 = M.trade.v4(
        instruments=m9.data,
        options_data=m4.data,
        start_date='',
        end_date='',
        initialize=m19_initialize_bigquant_run,
        handle_data=m19_handle_data_bigquant_run,
        prepare=m19_prepare_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.HIX'
    )
    
    m10 = M.sort.v5(
        sort_by='fantanbili',
        group_by='date',
        keep_columns='--',
        ascending=False
    )
    
    ---------------------------------------------------------------------------
    Exception                                 Traceback (most recent call last)
    <ipython-input-2-17b682937095> in <module>
        349 )
        350 
    --> 351 m6 = M.stock_ranker_train.v5(
        352     training_ds=m13.data,
        353     features=m3.data,
    
    Exception: 模型训练失败:可能导致错误的原因是训练数据问题,请检查训练数据, err_code=1 (e1134b2eb10111ecaa8b2645fd2d8677)