复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-5962:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-1070:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-1468:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-2988:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-2988:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"-2988:input_3","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"-1070:input_1","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-1468:input_1","from_node_id":"-238:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-1070:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-5962:data"},{"to_node_id":"-86:input_data","from_node_id":"-1468:data"},{"to_node_id":"-250:options_data","from_node_id":"-2988:data_1"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n# all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')].sort_values('preds',ascending=False)\n# display(ranker_prediction)\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-1070","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-1070"},{"name":"input_2","node_id":"-1070"}],"output_ports":[{"name":"data","node_id":"-1070"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-5962","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-5962"},{"name":"input_2","node_id":"-5962"}],"output_ports":[{"name":"data","node_id":"-5962"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1468","module_id":"BigQuantSpace.standardlize.standardlize-v9","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-1468"},{"name":"input_2","node_id":"-1468"}],"output_ports":[{"name":"data","node_id":"-1468"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-2988","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"from catboost import CatBoostRegressor\n\n# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3,iterations,learning_rate,depth):\n print(iterations,learning_rate,depth)\n # 示例代码如下。在这里编写您的代码\n # 提取数据\n train_ds = input_1.read()\n test_ds = input_3.read()\n features = input_2.read()\n \n #训练数据\n train_data = train_ds[features].values\n label = train_ds[['label']].values\n #预测数据\n predict_data = test_ds[features].values\n \n model = CatBoostRegressor(iterations=iterations,\n learning_rate=learning_rate,\n depth=depth)\n # Fit model\n model.fit(train_data, label)\n # Get predictions\n preds = model.predict(predict_data)\n #拼装预测结果\n df_predict_result = test_ds.copy()\n df_predict_result['preds'] = preds\n df_predict_result = df_predict_result.loc[:,['instrument','date','preds']]\n\n data_1 = DataSource.write_df(df_predict_result)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{\n \"iterations\":100,\n \"learning_rate\":0.03,\n \"depth\":6\n}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2988"},{"name":"input_2","node_id":"-2988"},{"name":"input_3","node_id":"-2988"}],"output_ports":[{"name":"data_1","node_id":"-2988"},{"name":"data_2","node_id":"-2988"},{"name":"data_3","node_id":"-2988"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-3826","module_id":"BigQuantSpace.hyper_run.hyper_run-v1","parameters":[{"name":"run","value":"def bigquant_run(bq_graph, inputs):\n\n parameters_list = []\n iterations = [100,300,500]\n learning_rates = [0.01,0.03]\n depths = [4,6]\n# iterations = [100]\n# learning_rates = [0.05]\n# depths = [4]\n i = 0\n for iteration in iterations:\n for lrate in learning_rates:\n for depth in depths:\n print(i,\" ------------ \",iteration,lrate,depth)\n parameters = {'m11.params':\"\"\"{\n \"iterations\":%d,\n \"learning_rate\":%f,\n \"depth\":%d\n }\"\"\"%(iteration,lrate,depth)}\n parameters_list.append({'parameters': parameters})\n i+=1\n\n\n def run(parameters):\n try:\n print(parameters)\n return g.run(parameters)\n except Exception as e:\n print('ERROR --------', e)\n return None\n \n results = T.parallel_map(run, parameters_list, max_workers=2, remote_run=False, silent=False)\n# results = T.parallel_map(run, parameters_list, max_workers=5, remote_run=True, silent=True, backend=\"threading\")\n\n return results\n","type":"Literal","bound_global_parameter":null},{"name":"run_now","value":"True","type":"Literal","bound_global_parameter":null},{"name":"bq_graph","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"bq_graph_port","node_id":"-3826"},{"name":"input_1","node_id":"-3826"},{"name":"input_2","node_id":"-3826"},{"name":"input_3","node_id":"-3826"}],"output_ports":[{"name":"result","node_id":"-3826"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='204,-11,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='53,181,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1083,78,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='407,462,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='367,104,200,200'/><node_position Node='-222' Position='354,201,200,200'/><node_position Node='-231' Position='1082,198,200,200'/><node_position Node='-238' Position='1085,280,200,200'/><node_position Node='-250' Position='693,746,200,200'/><node_position Node='-1070' Position='412,277,200,200'/><node_position Node='-5962' Position='78,264,200,200'/><node_position Node='-1468' Position='1059,348,200,200'/><node_position Node='-2988' Position='811,638,200,200'/><node_position Node='-3826' Position='289.02734375,634.6296081542969,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [ ]:
    # 本代码由可视化策略环境自动生成 2022年7月15日 10:56
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    from catboost import CatBoostRegressor
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m11_run_bigquant_run(input_1, input_2, input_3,iterations,learning_rate,depth):
        print(iterations,learning_rate,depth)
        # 示例代码如下。在这里编写您的代码
        # 提取数据
        train_ds = input_1.read()
        test_ds = input_3.read()
        features = input_2.read()
        
        #训练数据
        train_data = train_ds[features].values
        label = train_ds[['label']].values
        #预测数据
        predict_data = test_ds[features].values
        
        model = CatBoostRegressor(iterations=iterations,
                                  learning_rate=learning_rate,
                                  depth=depth)
        # Fit model
        model.fit(train_data, label)
        # Get predictions
        preds = model.predict(predict_data)
        #拼装预测结果
        df_predict_result = test_ds.copy()
        df_predict_result['preds'] = preds
        df_predict_result = df_predict_result.loc[:,['instrument','date','preds']]
    
        data_1 = DataSource.write_df(df_predict_result)
        return Outputs(data_1=data_1, data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m11_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.options['hold_days'] = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')].sort_values('preds',ascending=False)
    #     display(ranker_prediction)
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.portfolio.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.portfolio.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities)])))
    
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    
    g = T.Graph({
    
        'm1': 'M.instruments.v2',
        'm1.start_date': '2018-01-01',
        'm1.end_date': '2020-12-31',
        'm1.market': 'CN_STOCK_A',
        'm1.instrument_list': '',
        'm1.max_count': 0,
    
        'm2': 'M.advanced_auto_labeler.v2',
        'm2.instruments': T.Graph.OutputPort('m1.data'),
        'm2.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    # all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        'm2.start_date': '',
        'm2.end_date': '',
        'm2.benchmark': '000300.HIX',
        'm2.drop_na_label': True,
        'm2.cast_label_int': True,
    
        'm5': 'M.standardlize.v9',
        'm5.input_1': T.Graph.OutputPort('m2.data'),
        'm5.standard_func': 'ZScoreNorm',
        'm5.columns_input': 'label',
    
        'm3': 'M.input_features.v1',
        'm3.features': """# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    return_5
    return_10
    return_20
    avg_amount_0/avg_amount_5
    avg_amount_5/avg_amount_20
    rank_avg_amount_0/rank_avg_amount_5
    rank_avg_amount_5/rank_avg_amount_10
    rank_return_0
    rank_return_5
    rank_return_10
    rank_return_0/rank_return_5
    rank_return_5/rank_return_10
    pe_ttm_0
    """,
    
        'm15': 'M.general_feature_extractor.v7',
        'm15.instruments': T.Graph.OutputPort('m1.data'),
        'm15.features': T.Graph.OutputPort('m3.data'),
        'm15.start_date': '',
        'm15.end_date': '',
        'm15.before_start_days': 90,
    
        'm16': 'M.derived_feature_extractor.v3',
        'm16.input_data': T.Graph.OutputPort('m15.data'),
        'm16.features': T.Graph.OutputPort('m3.data'),
        'm16.date_col': 'date',
        'm16.instrument_col': 'instrument',
        'm16.drop_na': False,
        'm16.remove_extra_columns': False,
    
        'm4': 'M.standardlize.v9',
        'm4.input_1': T.Graph.OutputPort('m16.data'),
        'm4.input_2': T.Graph.OutputPort('m3.data'),
        'm4.standard_func': 'ZScoreNorm',
        'm4.columns_input': '[]',
    
        'm7': 'M.join.v3',
        'm7.data1': T.Graph.OutputPort('m5.data'),
        'm7.data2': T.Graph.OutputPort('m4.data'),
        'm7.on': 'date,instrument',
        'm7.how': 'inner',
        'm7.sort': False,
    
        'm13': 'M.dropnan.v1',
        'm13.input_data': T.Graph.OutputPort('m7.data'),
    
        'm9': 'M.instruments.v2',
        'm9.start_date': T.live_run_param('trading_date', '2021-01-01'),
        'm9.end_date': T.live_run_param('trading_date', '2021-12-31'),
        'm9.market': 'CN_STOCK_A',
        'm9.instrument_list': '',
        'm9.max_count': 0,
    
        'm17': 'M.general_feature_extractor.v7',
        'm17.instruments': T.Graph.OutputPort('m9.data'),
        'm17.features': T.Graph.OutputPort('m3.data'),
        'm17.start_date': '',
        'm17.end_date': '',
        'm17.before_start_days': 90,
    
        'm18': 'M.derived_feature_extractor.v3',
        'm18.input_data': T.Graph.OutputPort('m17.data'),
        'm18.features': T.Graph.OutputPort('m3.data'),
        'm18.date_col': 'date',
        'm18.instrument_col': 'instrument',
        'm18.drop_na': False,
        'm18.remove_extra_columns': False,
    
        'm10': 'M.standardlize.v9',
        'm10.input_1': T.Graph.OutputPort('m18.data'),
        'm10.input_2': T.Graph.OutputPort('m3.data'),
        'm10.standard_func': 'ZScoreNorm',
        'm10.columns_input': '',
    
        'm14': 'M.dropnan.v1',
        'm14.input_data': T.Graph.OutputPort('m10.data'),
    
        'm11': 'M.cached.v3',
        'm11.input_1': T.Graph.OutputPort('m13.data'),
        'm11.input_2': T.Graph.OutputPort('m3.data'),
        'm11.input_3': T.Graph.OutputPort('m14.data'),
        'm11.run': m11_run_bigquant_run,
        'm11.post_run': m11_post_run_bigquant_run,
        'm11.input_ports': '',
        'm11.params': """{
        "iterations":100,
        "learning_rate":0.03,
        "depth":6
    }""",
        'm11.output_ports': '',
    
        'm19': 'M.trade.v4',
        'm19.instruments': T.Graph.OutputPort('m9.data'),
        'm19.options_data': T.Graph.OutputPort('m11.data_1'),
        'm19.start_date': '',
        'm19.end_date': '',
        'm19.initialize': m19_initialize_bigquant_run,
        'm19.handle_data': m19_handle_data_bigquant_run,
        'm19.prepare': m19_prepare_bigquant_run,
        'm19.volume_limit': 0.025,
        'm19.order_price_field_buy': 'open',
        'm19.order_price_field_sell': 'close',
        'm19.capital_base': 1000000,
        'm19.auto_cancel_non_tradable_orders': True,
        'm19.data_frequency': 'daily',
        'm19.price_type': '真实价格',
        'm19.product_type': '股票',
        'm19.plot_charts': True,
        'm19.backtest_only': False,
        'm19.benchmark': '000300.HIX',
    })
    
    # g.run({})
    
    
    def m6_run_bigquant_run(bq_graph, inputs):
    
        parameters_list = []
        iterations = [100,300,500]
        learning_rates = [0.01,0.03]
        depths = [4,6]
    #     iterations = [100]
    #     learning_rates = [0.05]
    #     depths = [4]
        i = 0
        for iteration in iterations:
            for lrate in learning_rates:
                for depth in depths:
                    print(i," ------------ ",iteration,lrate,depth)
                    parameters = {'m11.params':"""{
                        "iterations":%d,
                        "learning_rate":%f,
                        "depth":%d
                    }"""%(iteration,lrate,depth)}
                    parameters_list.append({'parameters': parameters})
                    i+=1
    
    
        def run(parameters):
            try:
                print(parameters)
                return g.run(parameters)
            except Exception as e:
                print('ERROR --------', e)
                return None
            
        results = T.parallel_map(run, parameters_list, max_workers=2, remote_run=False, silent=False)
    #     results = T.parallel_map(run, parameters_list, max_workers=5, remote_run=True, silent=True, backend="threading")
    
        return results
    
    
    m6 = M.hyper_run.v1(
        run=m6_run_bigquant_run,
        run_now=True,
        bq_graph=g
    )
    
    In [121]:
    from datetime import datetime
    print(datetime.now())
    print(len(m6.result))
    for i in range(len(m6.result)):
        try:
            print('==='*15, i)
            perf = m6.result[i]['m19'].raw_perf.read()
            T.render_perf(perf, buy_moment="buy", sell_moment="sell")
        except Exception as e:
            print(e)
            continue
    
    2022-07-13 19:22:30.236435
    12
    ============================================= 0
    
    • 收益率55.54%
    • 年化收益率58.11%
    • 基准收益率-5.2%
    • 阿尔法0.57
    • 贝塔0.14
    • 夏普比率2.76
    • 胜率0.57
    • 盈亏比-1.42
    • 收益波动率16.0%
    • 信息比率0.14
    • 最大回撤9.84%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9bb2429d4a1644518b69af8faa657b9f"}/bigcharts-data-end
    ============================================= 1
    
    • 收益率46.68%
    • 年化收益率48.77%
    • 基准收益率-5.2%
    • 阿尔法0.48
    • 贝塔0.19
    • 夏普比率2.39
    • 胜率0.57
    • 盈亏比-1.3
    • 收益波动率15.9%
    • 信息比率0.13
    • 最大回撤10.49%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-d23da8a279064a7694c95b60154ccda5"}/bigcharts-data-end
    ============================================= 2
    
    • 收益率51.89%
    • 年化收益率54.25%
    • 基准收益率-5.2%
    • 阿尔法0.54
    • 贝塔0.21
    • 夏普比率2.57
    • 胜率0.56
    • 盈亏比-1.51
    • 收益波动率16.25%
    • 信息比率0.14
    • 最大回撤8.11%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-e2ff215b1f144bb3b5eacc4b9c8995cf"}/bigcharts-data-end
    ============================================= 3
    
    • 收益率56.35%
    • 年化收益率58.96%
    • 基准收益率-5.2%
    • 阿尔法0.59
    • 贝塔0.22
    • 夏普比率2.56
    • 胜率0.57
    • 盈亏比-1.43
    • 收益波动率17.58%
    • 信息比率0.15
    • 最大回撤10.16%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-f4ef8f4a499f4ad0a85049611428a26e"}/bigcharts-data-end
    ============================================= 4
    
    • 收益率45.14%
    • 年化收益率47.16%
    • 基准收益率-5.2%
    • 阿尔法0.47
    • 贝塔0.21
    • 夏普比率2.27
    • 胜率0.58
    • 盈亏比-1.24
    • 收益波动率16.32%
    • 信息比率0.13
    • 最大回撤8.87%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-193cfaa07a704beb952c7596e9d360ce"}/bigcharts-data-end
    ============================================= 5
    
    • 收益率52.4%
    • 年化收益率54.8%
    • 基准收益率-5.2%
    • 阿尔法0.54
    • 贝塔0.2
    • 夏普比率2.55
    • 胜率0.58
    • 盈亏比-1.38
    • 收益波动率16.53%
    • 信息比率0.14
    • 最大回撤8.76%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-2c8b3e78f7a24d9fa9bc4503806a8640"}/bigcharts-data-end
    ============================================= 6
    
    • 收益率41.47%
    • 年化收益率43.3%
    • 基准收益率-5.2%
    • 阿尔法0.43
    • 贝塔0.19
    • 夏普比率2.1
    • 胜率0.57
    • 盈亏比-1.26
    • 收益波动率16.35%
    • 信息比率0.12
    • 最大回撤8.07%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-054b865f99644c4aa0e69b08128392d4"}/bigcharts-data-end
    ============================================= 7
    
    • 收益率35.7%
    • 年化收益率37.25%
    • 基准收益率-5.2%
    • 阿尔法0.37
    • 贝塔0.21
    • 夏普比率1.82
    • 胜率0.55
    • 盈亏比-1.36
    • 收益波动率16.55%
    • 信息比率0.11
    • 最大回撤10.43%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-b86365e65c7a47478b76df8f0c89d99d"}/bigcharts-data-end
    ============================================= 8
    
    • 收益率51.85%
    • 年化收益率54.22%
    • 基准收益率-5.2%
    • 阿尔法0.54
    • 贝塔0.24
    • 夏普比率2.51
    • 胜率0.59
    • 盈亏比-1.27
    • 收益波动率16.65%
    • 信息比率0.14
    • 最大回撤10.47%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-263021a7990047c0a867ac5620e85dac"}/bigcharts-data-end
    ============================================= 9
    
    • 收益率44.48%
    • 年化收益率46.46%
    • 基准收益率-5.2%
    • 阿尔法0.46
    • 贝塔0.22
    • 夏普比率2.22
    • 胜率0.58
    • 盈亏比-1.31
    • 收益波动率16.5%
    • 信息比率0.13
    • 最大回撤11.26%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-04ea74b3c8a64448bdce58bd16907b3a"}/bigcharts-data-end
    ============================================= 10
    
    • 收益率35.83%
    • 年化收益率37.38%
    • 基准收益率-5.2%
    • 阿尔法0.37
    • 贝塔0.2
    • 夏普比率1.85
    • 胜率0.54
    • 盈亏比-1.39
    • 收益波动率16.3%
    • 信息比率0.11
    • 最大回撤8.34%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-d2577035eb5741dc9f6ee6783b31201c"}/bigcharts-data-end
    ============================================= 11
    
    • 收益率36.71%
    • 年化收益率38.3%
    • 基准收益率-5.2%
    • 阿尔法0.38
    • 贝塔0.19
    • 夏普比率1.8
    • 胜率0.55
    • 盈亏比-1.29
    • 收益波动率17.23%
    • 信息比率0.11
    • 最大回撤12.04%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-d4da1b151f9a4b3c962f23cb7fe7f967"}/bigcharts-data-end
    In [122]:
    import empyrical
    # 统计策略指标
    def get_stats(results):
    #     print(results)
        return_ratio  = empyrical.cum_returns_final(results.returns)
        annual_return_ratio  = empyrical.annual_return(results.returns)
    #     sharp_ratio = empyrical.sharpe_ratio(results.returns,0.035/252)
        sharp_ratio = results.iloc[-1].sharpe
        return_volatility = empyrical.annual_volatility(results.returns)
        max_drawdown  = empyrical.max_drawdown(results.returns)
        benchmark_returns = (results.benchmark_period_return+1)/(results.benchmark_period_return+1).shift(1)-1
        alpha, beta =empyrical.alpha_beta_aligned(results.returns, benchmark_returns)
    
        return {
          'return_ratio': return_ratio,
          'annual_return_ratio': annual_return_ratio,
          'beta': beta,
          'alpha': alpha,
          'sharp_ratio': sharp_ratio,
          'return_volatility': return_volatility,
          'max_drawdown': max_drawdown,
        }
    result_df = pd.DataFrame()
    for i in range(len(m6.result)):
        try:
            perf = m6.result[i]['m19'].raw_perf.read()
        except :
            print("no data",i)
            continue
        result = get_stats(perf) # 这里m是Trade模块的模块号,自行替换即可
        para = i
        result_df = result_df.append({"参数":para,'收益率':result['return_ratio'],'年化收益率':result['annual_return_ratio'],'最大回撤':abs(result['max_drawdown']),'夏普率':round(result['sharp_ratio'],2)},ignore_index=True)
        
    result_df
    result_df['收益回测比'] = result_df['年化收益率'] / result_df['最大回撤']
    result_df = result_df.sort_values('收益回测比',ascending=False)
    display(result_df)
    
    参数 夏普率 年化收益率 收益率 最大回撤 收益回测比
    2 2.0 2.57 0.542545 0.518850 0.081061 6.693003
    5 5.0 2.55 0.548002 0.524032 0.087648 6.252278
    0 0.0 2.76 0.581108 0.555449 0.098373 5.907176
    3 3.0 2.56 0.589554 0.563460 0.101605 5.802431
    6 6.0 2.10 0.432960 0.414668 0.080660 5.367728
    4 4.0 2.27 0.471558 0.451394 0.088699 5.316371
    8 8.0 2.51 0.542195 0.518518 0.104670 5.180065
    1 1.0 2.39 0.487735 0.466776 0.104903 4.649384
    10 10.0 1.85 0.373833 0.358337 0.083375 4.483752
    9 9.0 2.22 0.464627 0.444801 0.112623 4.125497
    7 7.0 1.82 0.372470 0.357038 0.104263 3.572396
    11 11.0 1.80 0.383041 0.367115 0.120386 3.181771