{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-322:features","from_node_id":"-331:data"},{"to_node_id":"-322:instruments","from_node_id":"-312:data"},{"to_node_id":"-322:user_functions","from_node_id":"-9065:functions"}],"nodes":[{"node_id":"-331","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"_Fx = pd.Series(np.log(1 - np.arange(1/8, 1, 1/8)).tolist())\n\n_tbv = total_bid_volume\n_tav = total_ask_volume\n\n# 帕累托系数因子\n_entrust_volume = _tbv.add(_tav)\n_entrust_volume_quantile = (_entrust_volume.quantile(np.arange(1/8, 1, 1/8).tolist()).sort_values(ascending=False)).apply(np.log)\nPareto = get_coef(_Fx, _entrust_volume_quantile)\n\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-331"}],"output_ports":[{"name":"data","node_id":"-331"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-312","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-03-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-05-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"000001.SZA\n000002.SZA\n000005.SZA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-312"}],"output_ports":[{"name":"data","node_id":"-312"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-322","module_id":"BigQuantSpace.feature_extractor_1m.feature_extractor_1m-v1","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"20","type":"Literal","bound_global_parameter":null},{"name":"workers","value":2,"type":"Literal","bound_global_parameter":null},{"name":"parallel_mode","value":"测试","type":"Literal","bound_global_parameter":null},{"name":"table_1m","value":"level2_bar1m_CN_STOCK_A","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-322"},{"name":"features","node_id":"-322"},{"name":"user_functions","node_id":"-322"}],"output_ports":[{"name":"data","node_id":"-322"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-9065","module_id":"BigQuantSpace.feature_extractor_user_function.feature_extractor_user_function-v1","parameters":[{"name":"name","value":"get_coef","type":"Literal","bound_global_parameter":null},{"name":"func","value":"def bigquant_run(df, x, y):\n from sklearn import linear_model\n\n X = np.array(x.fillna(0))\n Y = np.array(y.fillna(0)).reshape(-1,1)\n \n model = linear_model.LinearRegression().fit(Y, X)\n res = 1 - model.coef_.flatten()[0]\n return res","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_functions","node_id":"-9065"}],"output_ports":[{"name":"functions","node_id":"-9065"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-331' Position='-134,-239.43505859375,200,200'/><node_position Node='-312' Position='-440,-239,200,200'/><node_position Node='-322' Position='-130,-132,200,200'/><node_position Node='-9065' Position='209,-240,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-07-09 10:53:04.639753] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-07-09 10:53:04.645454] INFO: moduleinvoker: 命中缓存
[2021-07-09 10:53:04.646454] INFO: moduleinvoker: input_features.v1 运行完成[0.006707s].
[2021-07-09 10:53:04.648173] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-07-09 10:53:04.654898] INFO: moduleinvoker: 命中缓存
[2021-07-09 10:53:04.655735] INFO: moduleinvoker: instruments.v2 运行完成[0.00756s].
[2021-07-09 10:53:04.657405] INFO: moduleinvoker: feature_extractor_user_function.v1 运行完成[9e-05s].
[2021-07-09 10:53:04.659408] INFO: moduleinvoker: feature_extractor_1m.v1 开始运行..
[2021-07-09 10:53:04.681773] INFO: 高频特征抽取-分钟到日频: 测试模式运行, ['000005.SZA', '000002.SZA', '000001.SZA']
[2021-07-09 10:53:04.683028] INFO: 高频特征抽取-分钟到日频: parallel_calculate features 3 instruments, 6 features 2 processes_count..
[2021-07-09 10:53:04.683913] INFO: 高频特征抽取-分钟到日频: 开始计算 ... processes_count=2
[2021-07-09 10:53:04.701528] INFO: 高频特征抽取-分钟到日频: 计算中: 0%| | 0/3 [00:00, ?it/s]
[2021-07-09 10:53:05.759583] INFO: 高频特征抽取-分钟到日频: 计算中: 33%|########## | 1/3 [00:01<00:02, 1.06s/it]
[2021-07-09 10:53:05.858555] INFO: 高频特征抽取-分钟到日频: 计算中: 67%|#################### | 2/3 [00:01<00:00, 1.30it/s]
[2021-07-09 10:53:06.274206] INFO: 高频特征抽取-分钟到日频: 计算中: 100%|##############################| 3/3 [00:01<00:00, 1.51it/s]
[2021-07-09 10:53:06.371099] INFO: 高频特征抽取-分钟到日频: extracted chunk 3/3 instruments, (174, 3).
[2021-07-09 10:53:06.372081] INFO: 高频特征抽取-分钟到日频: merge result .......
[2021-07-09 10:53:06.445902] INFO: 高频特征抽取-分钟到日频: extracted 3/3 instruments, (174, 3)
[2021-07-09 10:53:06.447020] INFO: moduleinvoker: feature_extractor_1m.v1 运行完成[1.787608s].